Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 015201    DOI: 10.1088/0256-307X/33/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Modulation of Void Motion Behavior in a Magnetized Dusty Plasma
Zi-Juan Xie1, Yu Sui1**, Yi Wang2, Xian-Jie Wang1, Yang Wang2, Zhi-Guo Liu1, Bing-Sheng Li2, Yu Bai3, Zhi-Hao Wang3
1Department of Physics, Harbin Institute of Technology, Harbin 150001
2Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080
3Division of Space Material and Structure Protection, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094
Cite this article:   
Zi-Juan Xie, Yu Sui, Yi Wang et al  2016 Chin. Phys. Lett. 33 015201
Download: PDF(528KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. The nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion drag plays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, the azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.

Received: 23 August 2015      Published: 29 January 2016
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  82.70.Dd (Colloids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/015201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/015201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Juan Xie
Yu Sui
Yi Wang
Xian-Jie Wang
Yang Wang
Zhi-Guo Liu
Bing-Sheng Li
Yu Bai
Zhi-Hao Wang

[1] Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I and Petrov O F 2004 Phys.-Usp. 47 447
[2] Samsonov D and Goree J 1999 Phys. Rev. E 59 1047
[3] Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[4] Khrapak S and Morfill G 2009 Contrib. Plasma Phys. 49 148
[5] Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V and Morfill G E 2000 Phys. Rev. E 61 1890
[6] Kaw P K, Nishikawa K and Sato N 2002 Phys. Plasmas 9 387
[7] Wang Y N and Hou L J 2006 Thin Solid Films 506 647
[8] Schulze M, O'Connell D, Gans T, Awakowicz P and von Keudell A 2007 Plasma Sources Sci. Technol. 16 774
[9] Ishihara O, Kamimura T, Hirose K I and Sato N 2002 Phys. Rev. E 66 046406
[10] Avinash K, Bhattacharjee A and Hu S 2003 Phys. Rev. Lett. 90 075001
[11] Huang F, Ye M F, Wang L and Jiang N 2004 Chin. Phys. Lett. 21 121
[12] Huang F, Liu Y H, Chen Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[13] Huang F, Liu Y H, Ye M F and Wang L 2011 Phys. Scr. 83 025502
[14] Pilch I, Piel A and Trottenberg T 2007 Phys. Plasmas 14 123704
[15] Pilch I, Reichstein T and Piel A 2008 Phys. Plasmas 15 103706
[16] Reichstein T, Pilch I, Grosse-Ahlert R and Piel A 2010 IEEE Trans. Plasma Sci. 38 814
[17] Reichstein T, Pilch I and Piel A 2010 Phys. Plasmas 17 093701
[18] Reichstein T and Piel A 2011 Phys. Plasmas 18 083705
[19] Reichstein T, Wilms J, Greiner F, Piel A and Melzer A 2012 Contrib. Plasma Phys. 52 813
[20] Reichstein T, Wilms J and Piel A 2013 IEEE Trans. Plasma Sci. 41 759
[21] Land V, Goedheer W J and M Akdim R 2005 Phys. Rev. E 72 046403
[22] Jovanovi? D and Shukla P K 2004 Phys. Lett. A 329 334
[23] Bai D X, Wand Z X and Wang X G 2004 Chin. Phys. Lett. 21 125
[24] Farokhi B, Amini F and Eghbali M 2011 Chin. Phys. Lett. 28 075203
[25] Farokhi B and Eghbali M 2012 Chin. Phys. Lett. 29 075202

Related articles from Frontiers Journals
[1] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 015201
[2] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 015201
[3] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 015201
[4] H. G. Abdelwahed, E. K. El-Shewy, A. A. Mahmoud. On the Time Fractional Modulation for Electron Acoustic Shock Waves[J]. Chin. Phys. Lett., 2017, 34(3): 015201
[5] Hong-Jie Liu, Yu-Qiu Gu, Gang Li, Feng Lu, Bo Cui, Zeng-Hai Dai, Yan-Yun Ma, Wei-Min Zhou, Lei-Feng Cao, Bao-Han Zhang. Imaging Laser wake fields by Thomson Scattering a Co-Propagating Pulse[J]. Chin. Phys. Lett., 2017, 34(1): 015201
[6] H. G. Abdelwahed, E. K. ElShewy, A. A. Mahmoud. On Time-Fractional Cylindrical Nonlinear Equation[J]. Chin. Phys. Lett., 2016, 33(11): 015201
[7] Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang, Xiao-Hui Zhang. Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System[J]. Chin. Phys. Lett., 2016, 33(10): 015201
[8] Jun Guo. A Particle-in-Cell Simulation Study on Harmonic Waves Excited by Electron Beams in Unmagnetized Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 015201
[9] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 015201
[10] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 015201
[11] Shah M. G., Hossen M. R., Sultana S., Mamun A. A.. Positron-Acoustic Shock Waves in a Degenerate Multi-Component Plasma[J]. Chin. Phys. Lett., 2015, 32(08): 015201
[12] M. Ferdousi, S. Yasmin, S. Ashraf, A. A. Mamun. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2015, 32(01): 015201
[13] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, CAI Hong. Large Bi-Polar Signature in a Perpendicular Electric Field of Two-Dimensional Electrostatic Solitary Waves Associated with Magnetic Reconnection: Statistics and Discussion[J]. Chin. Phys. Lett., 2013, 30(1): 015201
[14] LI Shi-You, ZHANG Shi-Feng, DENG Xiao-Hua, and CAI Hong. Spatial Evolution of Electrostatic Solitary Waves along Plasma Sheet Boundary Layer Adjacent to the Magnetic Reconnection X-Line[J]. Chin. Phys. Lett., 2012, 29(8): 015201
[15] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 015201
Viewed
Full text


Abstract