PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Modulation of Void Motion Behavior in a Magnetized Dusty Plasma |
Zi-Juan Xie1, Yu Sui1**, Yi Wang2, Xian-Jie Wang1, Yang Wang2, Zhi-Guo Liu1, Bing-Sheng Li2, Yu Bai3, Zhi-Hao Wang3 |
1Department of Physics, Harbin Institute of Technology, Harbin 150001
2Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080
3Division of Space Material and Structure Protection, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 |
|
Cite this article: |
Zi-Juan Xie, Yu Sui, Yi Wang et al 2016 Chin. Phys. Lett. 33 015201 |
|
|
Abstract Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. The nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion drag plays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, the azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.
|
|
Received: 23 August 2015
Published: 29 January 2016
|
|
PACS: |
52.35.Fp
|
(Electrostatic waves and oscillations (e.g., ion-acoustic waves))
|
|
52.27.Lw
|
(Dusty or complex plasmas; plasma crystals)
|
|
82.70.Dd
|
(Colloids)
|
|
|
|
|
[1] Fortov V E, Khrapak A G, Khrapak S A, Molotkov V I and Petrov O F 2004 Phys.-Usp. 47 447
[2] Samsonov D and Goree J 1999 Phys. Rev. E 59 1047
[3] Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[4] Khrapak S and Morfill G 2009 Contrib. Plasma Phys. 49 148
[5] Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V and Morfill G E 2000 Phys. Rev. E 61 1890
[6] Kaw P K, Nishikawa K and Sato N 2002 Phys. Plasmas 9 387
[7] Wang Y N and Hou L J 2006 Thin Solid Films 506 647
[8] Schulze M, O'Connell D, Gans T, Awakowicz P and von Keudell A 2007 Plasma Sources Sci. Technol. 16 774
[9] Ishihara O, Kamimura T, Hirose K I and Sato N 2002 Phys. Rev. E 66 046406
[10] Avinash K, Bhattacharjee A and Hu S 2003 Phys. Rev. Lett. 90 075001
[11] Huang F, Ye M F, Wang L and Jiang N 2004 Chin. Phys. Lett. 21 121
[12] Huang F, Liu Y H, Chen Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[13] Huang F, Liu Y H, Ye M F and Wang L 2011 Phys. Scr. 83 025502
[14] Pilch I, Piel A and Trottenberg T 2007 Phys. Plasmas 14 123704
[15] Pilch I, Reichstein T and Piel A 2008 Phys. Plasmas 15 103706
[16] Reichstein T, Pilch I, Grosse-Ahlert R and Piel A 2010 IEEE Trans. Plasma Sci. 38 814
[17] Reichstein T, Pilch I and Piel A 2010 Phys. Plasmas 17 093701
[18] Reichstein T and Piel A 2011 Phys. Plasmas 18 083705
[19] Reichstein T, Wilms J, Greiner F, Piel A and Melzer A 2012 Contrib. Plasma Phys. 52 813
[20] Reichstein T, Wilms J and Piel A 2013 IEEE Trans. Plasma Sci. 41 759
[21] Land V, Goedheer W J and M Akdim R 2005 Phys. Rev. E 72 046403
[22] Jovanovi? D and Shukla P K 2004 Phys. Lett. A 329 334
[23] Bai D X, Wand Z X and Wang X G 2004 Chin. Phys. Lett. 21 125
[24] Farokhi B, Amini F and Eghbali M 2011 Chin. Phys. Lett. 28 075203
[25] Farokhi B and Eghbali M 2012 Chin. Phys. Lett. 29 075202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|