NUCLEAR PHYSICS |
|
|
|
|
Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks |
Qing-Dong Wu1, Ji Zeng1, Yuan-Yuan Hu1, Quan-Bo Li1, Dai-Cui Zhou2, Wen-Chang Xiang1,2** |
1College of Physics and Electronics Science, Guizhou Normal University, Guiyang 550001
2Institute of Particle Physics, Huazhong Normal University, Wuhan 430079 |
|
Cite this article: |
Qing-Dong Wu, Ji Zeng, Yuan-Yuan Hu et al 2016 Chin. Phys. Lett. 33 012502 |
|
|
Abstract An analytic massive total cross section of photon–proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function $F_2$ measured in lepton–hadron scattering experiments at small values of Bjorken $x$. It is shown that the descriptions of the inclusive structure function $F_2$ and longitudinal structure function $F_{\rm L}$ are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton–hadron cross section, which plays a significant role in the description of the photoproduction region.
|
|
Received: 22 August 2015
Published: 29 January 2016
|
|
PACS: |
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
24.85.+p
|
(Quarks, gluons, and QCD in nuclear reactions)
|
|
13.60.-r
|
(Photon and charged-lepton interactions with hadrons)
|
|
|
|
|
[1] Kovchegov Y V 1999 Phys. Rev. D 60 034008
Kovchegov Y V 2000 Phys. Rev. D 61 074018
[2] Balitsky I 1996 Nucl. Phys. B 463 99
Balitsky I 2001 Phys. Lett. B 518 235
[3] Golec-Biernat K and Wüsthoff M 1998 Phys. Rev. D 59 014017
[4] Golec-Biernat K and Wüsthoff M 1999 Phys. Rev. D 60 114023
[5] Stasto A, Golec-Biernat K and Kwiecinski J 2001 Phys. Rev. Lett. 86 596
[6] Caola F et al 2010 Phys. Lett. B 686 127
[7] Altarelli G et al 2000 Nucl. Phys. B 575 313
[8] Ciafaloni M et al 2003 Phys. Rev. D 68 114003
[9] Iancu E, Itakura K and Munier S 2004 Phys. Lett. B 590 199
[10] Xiang W C 2010 Eur. Phys. J. A 46 91
[11] Kozlov M, Shoshi A and Xiang W C 2007 J. High Energy Phys. 0710 20
[12] Albacete J L, Armesto N, Milhano J G and Salgado C A 2009 Phys. Rev. D 80 034031
[13] Gribov L V, Levin E M and Ryskin M G 1983 Phys. Rep. 100 1
[14] Mueller A H and Qiu J W 1986 Nucl. Phys. B 268 427
[15] Zhu W 1999 Nucl. Phys. B 551 245
Zhu W and Ruan J H 1999 Nucl. Phys. B 559 378
Zhu W, Shen Z Q and Ruan J H 2004 Nucl. Phys. B 692 417
[16] Hu Y Y, Zeng J, Zhou F C, Zhou D C and Xiang W C 2015 Eur. Phys. J. A (accepted)
[17] Mueller A H 1990 Nucl. Phys. B 335 115
[18] Nikolaev N N and Zakharov B G 1991 Z. Phys. C 49 607
[19] Marquet C and Schoeffel L 2006 Phys. Lett. B 639 471
[20] Albacete J L, Armesto N, Milhano J G, Quiroga P and Salgado C A 2011 Eur. Phys. J. C 71 1705
[21] Aaron F D et al 2010 J. High Energy Phys. 1001 109
[22] Olive K A et al 2014 Chin. Phys. C 38 090001
[23] Triantafyllopoulos D N 2003 Nucl. Phys. B 648 293
[24] Aaron F D et al 2009 Eur. Phys. J. C 63 625
[25] Aaron F D et al 2009 Eur. Phys. J. C 64 561
[26] Aaron F D et al 2011 Eur. Phys. J. C 71 1579
[27] Andreev V et al 2014 Eur. Phys. J. C 74 2814
[28] Iancu E, Madrigal J D, Mueller A H, Soyez G and Triantafyllopoulos D N 2015 arXiv:1507.03651[hep-ph]
[29] Xiang W C 2009 Phys. Rev. D 79 014012
[30] Xiang W C 2010 Phys. Rev. D 81 094004 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|