ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses |
Zi-Qian Huang1,2**, Rong-Yao Yang1, Wei-Zhou Jiang1, Qi-Lin Zhang3 |
1Department of Physics, Southeast University, Nanjing 211189
2Department of Physics, Guangxi Teachers Education University, Nanning 530023
3Department of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000 |
|
Cite this article: |
Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang et al 2016 Chin. Phys. Lett. 33 013101 |
|
|
Abstract Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of water molecules exhibits a pronounced resonance with THz pulses in the frequency range of 14–17 THz. With the THz pulse at resonant frequencies, the maximum temperature is about 562 K by heating the water at room temperature. Further investigation indicates that the results are independent of the size of the nanoscale water box. The efficiency of energy transfer by resonant absorption is more than seven times of microwave heating. These studies show promising applications of ultrashort THz pulses.
|
|
Received: 26 August 2015
Published: 29 January 2016
|
|
PACS: |
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
61.20.Ja
|
(Computer simulation of liquid structure)
|
|
87.50.uj
|
(Biophysical mechanisms of interaction)
|
|
|
|
|
[1] Carr G L, Martin M C, McKinney W R et al 2002 Nature 420 153
[2] Salamin Y I, Hu S X, Hatsagortsyan K Z et al 2006 Phys. Rep. 427 41
[3] Stepanov A G, Bonacina L, Chekalin S V et al 2008 Opt. Lett. 33 2497
[4] Gopal A, Herzer S, Schmidt A et al 2013 Phys. Rev. Lett. 111 074802
[5] Casalbuoni S, Schmidt B, Schmüser P et al 2009 Phys. Rev. Spec. Top. Accel. Beams 12 030705
[6] Fan C H, Sun J and Longtin J P 2002 J. Appl. Phys. 91 2530
[7] Backus H G E, Tielrooij K J, Bonn M et al 2014 Opt. Lett. 39 1717
[8] Mishra P K, Vendrell O and Santra R 2015 J. Phys. Chem. B 119 8080
[9] Walrafen G E 1964 J. Chem. Phys. 40 3249
[10] James D W and Armishaw R F 1975 Aust. J. Chem. 28 1179
[11] Thrane L, Jacobsen R H, Jepsen P U et al 1995 Chem. Phys. Lett. 240 330
[12] Alexiadis A and Kassinos S 2008 Chem. Rev. 108 5014
[13] Levinger N E 2002 Science 298 1722
[14] Boyd J E, Briskman A and Colvin V L 2001 Phys. Rev. Lett. 87 147401
[15] Zhang Q L, Jiang W Z, Liu J et al 2013 Phys. Rev. Lett. 110 254501
[16] Heugen U, Schwaab G, Brundermann E et al 2006 Proc. Natl. Acad. Sci. USA 103 12301
[17] Heyden M, Sun J, Funkner S et al 2010 Proc. Natl. Acad. Sci. USA 107 12068
[18] Phillips J C, Braun R, Wang W et al 2005 J. Comput. Chem. 26 1781
[19] Darden T, York D, Pedersen L et al 1993 J. Chem. Phys. 98 10089
[20] Mackerell A D, Bashford D, Bellott M et al 1998 J. Phys. Chem. B 102 3586
[21] Jorgensen W L, Chandrasekhar J and Madura J D 1983 J. Chem. Phys. 79 926
[22] English N J and MacElroy J M D 2003 J. Chem. Phys. 118 1589
[23] Mishra P K, Vendrell O and Santra R 2013 Angew. Chem. Int. Ed. 52 13685
[24] Zhang Q L, Yang R Y, Jiang W Z and Huang Z Q 2015 arXiv:1503.01924v2[cond-mat.mes-hall]
[25] Madden P A and Impey R W 1986 Chem. Phys. Lett. 123 502
[26] Harder E, Eaves J D, Tokmakoff A et al 2005 Proc. Natl. Acad. Sci. USA 102 11611
[27] George S F and Sotiris S X 2008 J. Chem. Phys. 128 074506 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|