Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 010401    DOI: 10.1088/0256-307X/33/1/010401
GENERAL |
Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores
Xiu-Ming Zhang**, Wei Fu
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
Xiu-Ming Zhang, Wei Fu 2016 Chin. Phys. Lett. 33 010401
Download: PDF(495KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the generalized uncertainty principle with maximum momentum and minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the problem that the Fermi degenerate pressure blows up since the increase of the Fermi energy is not limited. Applying this equation of state to the Tolman–Oppenheimer–Volkoff (TOV) equation, the quantum gravitational effects on the cores of compact stars are discussed. In the center of compact stars, we obtain the singularity-free solution of the metric component, $g_{\rm tt}\sim -(1+0.2185\times \tilde r^2)$. By numerically solving the TOV equation, we find that quantum gravity plays an important role in the region $r\sim 10^{4}\alpha_0(\Delta x)_{\min}$. Current observed masses of neutron stars indicate that the dimensionless parameter $\alpha_0$ cannot exceed $10^{19}$.
Received: 14 September 2015      Published: 29 January 2016
PACS:  04.60.-m (Quantum gravity)  
  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  51.30.+i (Thermodynamic properties, equations of state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/010401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/010401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiu-Ming Zhang
Wei Fu
[1] Weinberg S 1972 Gravitation and Cosmology (New York: Wiley)
[2] Tolman R C 1939 Phys. Rev. 55 364
[3] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[4] Lattimer J M and Prakash M 2001 Astrophys. J. 550 426
[5] Camacho A 2006 Class. Quantum Grav. 23 7355
[6] Gregg M and Major S A 2009 Int. J. Mod. Phys. D 18 971
[7] Bertolami O and Zarro C A D 2010 Phys. Rev. D 81 025005
[8] Amelino-Camelia G, Loret N, Mandanici G and Mercati F 2012 Int. J. Mod. Phys. D 21 1250052
[9] Ali A F and Tawfik A 2013 Int. J. Mod. Phys. D 22 1350020
[10] Wang P, Yang H T and Zhang X M 2010 J. High Energy Phys. 1008 043
[11] Wang P, Yang H T and Zhang X M 2012 Phys. Lett. B 718 265
[12] Ali A F, Das S and Vagenas E C 2009 Phys. Lett. B 678 497
[13] Das S, Vagenas E C and Ali A F 2010 Phys. Lett. B 690 407
[14] Nozari K and Etemadi E 2012 Phys. Rev. D 85 104029
[15] Pedram P 2012 Phys. Lett. B 714 317
[16] Pedram P 2012 Phys. Lett. B 718 638
[17] Magueijo J and Smolin L 2002 Phys. Rev. Lett. 88 190403
[18] Magueijo J and Smolin L 2003 Phys. Rev. D 67 044017
[19] Magueijo J and Smolin L 2005 Phys. Rev. D 71 026010
[20] Jalalzadeh S, Gorji M A and Nozari K 2014 Gen. Relativ. Gravit. 46 1632
[21] Ali A F and Moussa M 2014 Adv. High Energy Phys. 2014 629148
[22] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028
[23] Fityo T V 2008 Phys. Lett. A 372 5872
[24] Ali A F, Das S and Vagenas E C 2011 Phys. Rev. D 84 044013
[25] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301
Related articles from Frontiers Journals
[1] QI Wei-Jun, REN Xin-An. From the Anti-Yang Model to the Anti-Snyder Model and Anti-De Sitter Special Relativity[J]. Chin. Phys. Lett., 2013, 30(4): 010401
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 010401
[3] MU Ben-Rong, WU Hou-Wen**, YANG Hai-Tang . Generalized Uncertainty Principle in the Presence of Extra Dimensions[J]. Chin. Phys. Lett., 2011, 28(9): 010401
[4] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 010401
[5] V. Enache, Camelia Popa, V. Paun, M. Agop,. Reissner--Nordström-de--Sitter-type Solution by a Gauge Theory of Gravity[J]. Chin. Phys. Lett., 2008, 25(10): 010401
[6] CHEN Shi-Wu, YANG Shu-Zheng, HAO Xi-Zhun, LIU Xiong-Wei. A Kind of Exact Inflationary Solution in the Chaotic Inflation Model to Non-minimally Coupled Scalar Field[J]. Chin. Phys. Lett., 2008, 25(9): 010401
[7] LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant[J]. Chin. Phys. Lett., 2008, 25(8): 010401
[8] LIN Kai, YANG Shu-Zheng. An Inflationary Solution of Scalar Field in Finsler Universe[J]. Chin. Phys. Lett., 2008, 25(7): 010401
[9] BI Qiao,. Fluctuation of Quantum Information Density in Curved Time--Space[J]. Chin. Phys. Lett., 2007, 24(4): 010401
[10] SHU Wei-Xing, WU Pun-Xun, YU Hong-Wei. Quantum Inequality for Negative Energy Density States of Massive Dirac Field in Four-Dimensional Spacetime[J]. Chin. Phys. Lett., 2003, 20(12): 010401
[11] WANG Wen-Fu. Exact Solution in Chaotic Inflation Model with Negative Potential[J]. Chin. Phys. Lett., 2003, 20(4): 010401
Viewed
Full text


Abstract