GENERAL |
|
|
|
|
Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores |
Xiu-Ming Zhang**, Wei Fu |
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
Xiu-Ming Zhang, Wei Fu 2016 Chin. Phys. Lett. 33 010401 |
|
|
Abstract Based on the generalized uncertainty principle with maximum momentum and minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the problem that the Fermi degenerate pressure blows up since the increase of the Fermi energy is not limited. Applying this equation of state to the Tolman–Oppenheimer–Volkoff (TOV) equation, the quantum gravitational effects on the cores of compact stars are discussed. In the center of compact stars, we obtain the singularity-free solution of the metric component, $g_{\rm tt}\sim -(1+0.2185\times \tilde r^2)$. By numerically solving the TOV equation, we find that quantum gravity plays an important role in the region $r\sim 10^{4}\alpha_0(\Delta x)_{\min}$. Current observed masses of neutron stars indicate that the dimensionless parameter $\alpha_0$ cannot exceed $10^{19}$.
|
|
Received: 14 September 2015
Published: 29 January 2016
|
|
PACS: |
04.60.-m
|
(Quantum gravity)
|
|
04.40.Dg
|
(Relativistic stars: structure, stability, and oscillations)
|
|
51.30.+i
|
(Thermodynamic properties, equations of state)
|
|
|
|
|
[1] Weinberg S 1972 Gravitation and Cosmology (New York: Wiley) [2] Tolman R C 1939 Phys. Rev. 55 364 [3] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374 [4] Lattimer J M and Prakash M 2001 Astrophys. J. 550 426 [5] Camacho A 2006 Class. Quantum Grav. 23 7355 [6] Gregg M and Major S A 2009 Int. J. Mod. Phys. D 18 971 [7] Bertolami O and Zarro C A D 2010 Phys. Rev. D 81 025005 [8] Amelino-Camelia G, Loret N, Mandanici G and Mercati F 2012 Int. J. Mod. Phys. D 21 1250052 [9] Ali A F and Tawfik A 2013 Int. J. Mod. Phys. D 22 1350020 [10] Wang P, Yang H T and Zhang X M 2010 J. High Energy Phys. 1008 043 [11] Wang P, Yang H T and Zhang X M 2012 Phys. Lett. B 718 265 [12] Ali A F, Das S and Vagenas E C 2009 Phys. Lett. B 678 497 [13] Das S, Vagenas E C and Ali A F 2010 Phys. Lett. B 690 407 [14] Nozari K and Etemadi E 2012 Phys. Rev. D 85 104029 [15] Pedram P 2012 Phys. Lett. B 714 317 [16] Pedram P 2012 Phys. Lett. B 718 638 [17] Magueijo J and Smolin L 2002 Phys. Rev. Lett. 88 190403 [18] Magueijo J and Smolin L 2003 Phys. Rev. D 67 044017 [19] Magueijo J and Smolin L 2005 Phys. Rev. D 71 026010 [20] Jalalzadeh S, Gorji M A and Nozari K 2014 Gen. Relativ. Gravit. 46 1632 [21] Ali A F and Moussa M 2014 Adv. High Energy Phys. 2014 629148 [22] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028 [23] Fityo T V 2008 Phys. Lett. A 372 5872 [24] Ali A F, Das S and Vagenas E C 2011 Phys. Rev. D 84 044013 [25] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|