Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 010303    DOI: 10.1088/0256-307X/33/1/010303
GENERAL |
Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential
Jie Gao, Min-Cang Zhang**
College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
Cite this article:   
Jie Gao, Min-Cang Zhang 2016 Chin. Phys. Lett. 33 010303
Download: PDF(428KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The analytical solutions to the Schr?dinger equation with the Eckart potential in arbitrary dimension $D$ is investigated by using the Nikiforov–Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunction is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for $D$=3, and the resulting energy equation agrees well with that obtained by other methods.
Received: 05 November 2015      Published: 29 January 2016
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Db (Functional analytical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/010303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/010303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie Gao
Min-Cang Zhang
[1] Dong S H 2011 Wave Equation in Higher Dimensions (Berlin: Springer)
[2] Bender C M, Boettcher S and Lipatov L 1992 Phys. Rev. D 46 5557
[3] Crisan M, Bodea D, Grosu I and Tifrea I 2002 J. Phys. A: Math. Gen. 35 239
[4] Chen G, Ding Z, Perronnet A and Zhang Z 2008 J. Math. Phys. 49 062102
[5] Al-Jaber S M 2003 Int. J. Theor. Phys. 42 111 %
[6] Al-Jaber S M and Lombard R J 2005 J. Phys. A: Math. Gen. 38 4637
[7] Cardoso J L and álvarez-Nodarse R 2003 J. Phys. A: Math. Gen. 36 2055
[8] Chetouani L and Hammann T F 1986 J. Math. Phys. 27 2944
[9] Schiff L I 1955 Quantum Mechanics (New York: McGraw-Hill) 3rd edn
[10] Chatterjee A 1990 Phys. Rep. 186 249
[11] Nieto M M 1979 Am. J. Phys. 47 1067
[12] Moss R E 1987 Am. J. Phys. 55 397
[13] Kostelecky V A and Russell N 1996 J. Math. Phys. 37 2166
[14] Lévai G, Kónya B and Papp Z 1998 J. Math. Phys. 38 5811
[15] Xie X J and Jia C S 2015 Phys. Scr. 90 035207
[16] Ibrahim T T, Oyewumi K J and Wyngaardt S M 2012 Eur. Phys. J. Plus 127 100
[17] Gu X Y and Dong S H 2011 J. Math. Chem. 49 2053
[18] Dong S H 2002 Found. Phys. Lett. 15 385 %
[19] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[20] Durmus A 2011 J. Phys. A: Math. Theor. 44 155205
[21] Zeng G J, Su K L and Li M 1994 Phys. Rev. A 50 4373
[22] Chen G, Ding Z, Lin C S, Herschbach D and Scully M O 2010 J. Math. Chem. 48 791
[23] Zhang M C and Huang-Fu G Q 2012 Phys. Scr. 85 015005
[24] Zhang M C 2013 Chin. Phys. Lett. 30 110301
[25] Eckart C 1930 Phys. Rev. 35 1303
[26] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[27] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[28] Weiss J J 1964 J. Chem. Phys. 41 1120
[29] Jia C S, Diao Y F, Min L, Yang Q B, Sun L T and Huang R Y 2004 J. Phys. A: Math. Gen. 37 11275
[30] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115
[31] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039
[32] Avery J 1998 J. Chem. Phys. 24 169
[33] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[34] Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A: Math. Theor. 40 10535
[35] Agboola D 2009 Phys. Scr. 80 065304
[36] Gradsgteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products 5th edn (New York: Academic Press)
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 010303
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 010303
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 010303
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 010303
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 010303
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 010303
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 010303
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 010303
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 010303
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 010303
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 010303
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 010303
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 010303
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 010303
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 010303
Viewed
Full text


Abstract