Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 010302    DOI: 10.1088/0256-307X/33/1/010302
GENERAL |
Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the Quantumness Witness
Xu Chen, Hong-Yi Su, Jing-Ling Chen**
Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071
Cite this article:   
Xu Chen, Hong-Yi Su, Jing-Ling Chen 2016 Chin. Phys. Lett. 33 010302
Download: PDF(366KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Clauser–Horne–Shimony–Holt-type noncontextuality inequality and the Svetlichny inequality are derived from the Alicki–van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established.

Received: 25 September 2015      Published: 29 January 2016
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Xa (Optical tests of quantum theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/010302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/010302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Chen
Hong-Yi Su
Jing-Ling Chen

[1] Facchi P, Pascazio S, Vedral V and Yuasa K 2012 J. Phys. A: Math. Theor. 45 105302
[2] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[3] Svetlichny G 1987 Phys. Rev. D 35 3066
     Seevinck N and Svetlichny G 2002 Phys. Rev. Lett. 89 060401
[4] Zhang S, Zhou Z W and Guo G C 2009 Chin. Phys. Lett. 26 020304
     Sun Y H and Kuang L M 2006 Chin. Phys. 15 681
     Zhang D Y et al 2010 Chin. Phys. B 19 100305
     Ding D, He Y Q, Yan F L and Gao T 2015 Chin. Phys. B 24 070301
[5] Gühne O et al 2010 Phys. Rev. A 81 022121
[6] Clauser J, Horne M, Shimony A and Holt R 1969 Phys. Rev. Lett. 23 880
     Xiang Y and Hong F Y 2013 Chin. Phys. B 22 110302
[7] Alicki R and Van Ryn N 2008 J. Phys. A: Math. Theor. 41 062001
[8] Alicki R, Piani M and Van Ryn N 2008 J. Phys. A: Math. Theor. 41 495303
[9] Chen J L et al 2011 Phys. Rev. A 83 022316
[10] Mermin N D 1990 Phys. Rev. Lett. 65 1838
       Ardehali M 1992 Phys. Rev. A 46 5375
       Belinskii A V and Klyshko D N 1993 Phys.-Usp. 36 653
[11] Cabello A 2008 Phys. Rev. Lett. 101 210401

Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 010302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 010302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 010302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 010302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 010302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 010302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 010302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 010302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 010302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 010302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 010302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 010302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 010302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 010302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 010302
Viewed
Full text


Abstract