NUCLEAR PHYSICS |
|
|
|
|
Residual Nuclides Induced in Cu Target by a 250 MeV Proton Beam |
ZHANG Hong-Bin1, ZHANG Xue-Ying1**, MA Fei1, JU Yong-Qin1, GE Hong-Lin1, CHEN Liang1, ZHANG Yan-Bin1, WEI Ji-Fang2, LI Yan-Yan1,3, LUO Peng1, WANG Jian-Guo1, WAN Bo1,3, XU Xiao-Wei1,3, ZHOU Bin4 |
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 2North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033 3University of Chinese Academy of Sciences, Beijing 100049 4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
ZHANG Hong-Bin, ZHANG Xue-Ying, MA Fei et al 2015 Chin. Phys. Lett. 32 042501 |
|
|
Abstract Residual nuclide production is studied experimentally by bombarding a Cu target with a 250 MeV proton beam. The data are measured by the off-line γ-spectroscopy method. Six nuclides are identified and their cross sections are determined. The corresponding calculated results by the MCNPX and GEANT4 codes are compared with the experimental data to check the validity of the codes. A comparison shows that the MCNPX simulation has a better agreement with the experiment. The energy dependence of residual nuclide production is studied with the aid of MCNPX simulation, and it is found that the mass yields for the nuclides in the light mass region increase significantly with the proton energy.
|
|
Received: 28 October 2014
Published: 30 April 2015
|
|
PACS: |
25.40.Sc
|
(Spallation reactions)
|
|
25.70.Mn
|
(Projectile and target fragmentation)
|
|
24.10.Lx
|
(Monte Carlo simulations (including hadron and parton cascades and string breaking models))
|
|
|
|
|
[1] Gloris M, Michel R, Sudbrock F et al 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 463 593 [2] Krivopustov M I, Chultem D, Adam J et al 2003 Kerntechnik 68 48 [3] Bowman C D, Arthur E D, Lisowski P W et al 1992 Nucl. Instrum. Methods Phys. Res. Sect. A 320 336 [4] Pelowitz D B et al 2008 LANL Report LA-UR-08 [5] Niita K, Matsuda N, Iwamoto Y et al 2010 JAEA-Data/Code2010-022 (Japan Atomic Energy Agency) [6] Agostinelli S, Allison J, Amako K et al 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250 [7] Battistoni G, Muraro S, Sala P R et al 2007 AIP Conf. Proc. 896 31 [8] Michel R et al 1995 Nucl. Instrum. Methods Phys. Res. Sect. B 103 183 [9] Michel R et al 1997 Nucl. Instrum. Methods Phys. Res. Sect. B 129 153 [10] Schiekel Th et al 1996 Nucl. Instrum. Methods Phys. Res. Sect. B 114 91 [11] Xia J W et al 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 488 11 [12] Yashima H, Uwamino Y, Iwase H et al 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 243 [13] Westmeier W 1995 GAMM-W Manual, Ebsdorfergrund–M?lln [14] Westmeier W 1994 Commericially Available Code GAMA-W Version 15.03 [15] Yashima H, Uwamino Y, Sugita H et al 2002 Phys. Rev. C 66 044607 [16] Titarenko Y E, Batyaev V F, Karpikhin E I et al 2003 ISTC 89B-99 93 [17] Physics Reference Manual, Version: G E A NT4 10.0 2013. http://geant4.cern.ch/support/userdocuments.shtml [18] Bertini H W 1969 Phys. Rev. 188 1711 [19] Atchison F 1994 Intermediate Energy Nuclear Data: Models and Codes, Proc. of a Specialists' Meeting (30 May–1 June, Issy-Les-Moulineaux, France) p 199 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|