Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 043201    DOI: 10.1088/0256-307X/32/4/043201
ATOMIC AND MOLECULAR PHYSICS |
Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures
K. Chaudhary1**, S. Rosalan1, M. S. Aziz1, M. Bohadoran1, J Ali1, P. P. Yupapin2, N. Bidin1, Saktioto1,3
1Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2Nanoscale Science and Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
3Physics Department, Universitiy of Riou, Pekanbaru, Indonasia
Cite this article:   
K. Chaudhary, S. Rosalan, M. S. Aziz et al  2015 Chin. Phys. Lett. 32 043201
Download: PDF(1050KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Ablation and excitation of the graphite material is performed by using an 1064 nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emission. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations.
Received: 28 September 2014      Published: 30 April 2015
PACS:  32.30.Jc (Visible and ultraviolet spectra)  
  52.25.Dg (Plasma kinetic equations)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/043201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Chaudhary
S. Rosalan
M. S. Aziz
M. Bohadoran
J Ali
P. P. Yupapin
N. Bidin
Saktioto
[1] Baudelet M and Smith B W 2013 J. Anal. At. Spectrom. 28 624
[2] Cremers D A, Multari R A and Knight A K 2006 Laser-Induced Breakdown Spectroscopy (New York: John Wiley & Sons)
[3] Cremers D A and Radziemski L J 2013 Appendix C: Detection Limits from the Literature (New York: John Wiley & Sons)
[4] Dong M, Mao X, Gonzalez J J, Lu J and Russo R E 2012 J. Anal. At. Spectrom. 27 2066
[5] Ma Q, Motto-Ros V, Lei W, Boueri M, Bai X, Zheng L, Zeng H and Yu J 2010 Spectrochim. Acta Part B 65 896
[6] Makarov G N 2013 Phys.-Usp. 56 643
[7] St-Onge L, Sing R, Béchard S and Sabsabi M 1999 Appl. Phys. A 69 S913
[8] Anzano J, Gornushkin I, Smith B and Winefordner J 2000 Polym. Eng. Sci. 40 2423
[9] Harmon R S, DeLucia Jr F C, LaPointe A, Winkel Jr R J and Miziolek A W 2006 Anal. Bioanal. Chem. 385 1140
[10] De Lucia F C, Harmon R S, McNesby K L, Winkel R J and Miziolek A W 2003 Appl. Opt. 42 6148
[11] Portnov A, Rosenwaks S and Bar I 2003 Appl. Opt. 42 2835
[12] Lopez-Moreno C, Palanco S, Laserna J J, DeLucia Jr F, Miziolek A W, Rose J, Walters R A and Whitehouse A I 2006 J. Anal. At. Spectrom. 21 55
[13] St-Onge L, Kwong E, Sabsabi M and Vadas E 2002 Spectrochim. Acta Part B 57 1131
[14] Baudelet M, Boueri M, Yu J, Mao S S, Piscitelli V, Mao X and Russo R E 2007 Spectrochim. Acta Part B 62 1329
[15] Hegazy H, El-Ghany H A, Allam S and El-Sherbini T M 2013 Appl. Phys. B 110 509
[16] Hoffman J, Moscicki T and Szymanski Z 2012 J. Phys. D: Appl. Phys. 45 025201
[17] Mercadier L, Hermann J, Grisolia C and Semerok A 2013 J. Anal. At. Spectrom. 28 1446
[18] De Giacomo A, Gaudiuso R, Dell'Aglio M and Santagata A 2010 Spectrochim. Acta Part B 65 385
[19] Singh J P and Thakur S N 2007 Laser-Induced Breakdown Spectroscopy (Amsterdam: Elsevier)
[20] Effenberger A J and Scott J R 2010 Sensors 10 4907
[21] Miziolek A W, Palleschi V and Schechter I 2006 Laser-Induced Breakdown Spectroscopy (Cambridge: Cambridge University Press)
[22] Yalc?n S, Tsui Y Y and Fedosejevs R 2004 J. Anal. At. Spectrom. 19 1295
[23] Chaudhary K T, Ali J and Yupapin P P 2014 Chin. Phys. B 23 35203
Related articles from Frontiers Journals
[1] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 043201
[2] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[3] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 043201
[4] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 043201
[5] Shi-Quan Cao, Mao-Gen Su, Dui-Xiong Sun, Qi Min, Chen-Zhong Dong. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas[J]. Chin. Phys. Lett., 2016, 33(04): 043201
[6] K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bahadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto. Erratum: Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures [Chin. Phys. Lett. Vol. 32, No. 4, 043201(2015)][J]. Chin. Phys. Lett., 2015, 32(06): 043201
[7] ZOU Hong-Xin, WU Yue, CHEN Guo-Zhu, SHEN Yong, LIU Qu. Generation of Continuous-Wave 194 nm Laser for Mercury Ion Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(5): 043201
[8] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 043201
[9] XIE Feng, LI Dan, JIA Feng-Dong, ZHONG Zhi-Ping. An Analytical Derivation of a Symmetric Peak with Width Narrower than the Peak Width of the Probing Laser[J]. Chin. Phys. Lett., 2014, 31(1): 043201
[10] WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming, ZHANG Sheng-Nan HONG Ye-Long, ZHUANG Wei, CHEN Jing-Biao . Cs 455 nm Nonlinear Spectroscopy with Ultra-narrow Linewidth[J]. Chin. Phys. Lett., 2013, 30(6): 043201
[11] SUN Shao-Hua, LIU Xiao-Liang, LIU Zuo-Ye, WANG Xiao-Shan, DING Peng-Ji, LIU Qing-Cao, GUO Ze-Qin, HU Bi-Tao. The Angular Distribution of Optical Emission Spectroscopy from a Femtosecond Laser Filament in Air[J]. Chin. Phys. Lett., 2013, 30(4): 043201
[12] YANG Zhi-Hu, XU Qiu-Mei, GUO Yi-Pan, WU Ye-Hong, SONG Zhang-Yong. Visible Light Emission in Highly Charged Kr17+ Ions Colliding with an Al Surface[J]. Chin. Phys. Lett., 2013, 30(1): 043201
[13] CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong. Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions[J]. Chin. Phys. Lett., 2012, 29(11): 043201
[14] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 043201
[15] ZHANG Da-Cheng, MA Xin-Wen, WEN Wei-Qiang, ZHANG Peng-Ju, ZHU Xiao-Long, LI Bin, LIU Hui-Ping. Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample[J]. Chin. Phys. Lett., 2010, 27(6): 043201
Viewed
Full text


Abstract