Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 126201    DOI: 10.1088/0256-307X/32/12/126201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear
DONG Yuan-Xiang1, ZHANG Guo-Hua1**, SUN Qi-Cheng2**, ZHAO Xue-Dan1, NIU Xiao-Na1
1Department of Physics, University of Science and Technology Beijing, Beijing 100083
2State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng et al  2015 Chin. Phys. Lett. 32 126201
Download: PDF(3771KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the numerical simulation results of a model granular assembly formed by spherical particles with Hertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low-frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally.
Received: 29 July 2015      Published: 05 January 2016
PACS:  62.20.F- (Deformation and plasticity)  
  62.25.Jk (Mechanical modes of vibration)  
  45.70.-n (Granular systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/126201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/126201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Yuan-Xiang
ZHANG Guo-Hua
SUN Qi-Cheng
ZHAO Xue-Dan
NIU Xiao-Na
[1] Reddy K A, Forterre Y and Pouliquen O 2011 Phys. Rev. Lett. 106 108301
[2] Schall P, Weitz D A and Spaepen F 2007 Science 318 1895
[3] Lundberg M, Kapilanjan K, Xu N, O'Hern C S and Dennin M 2008 Phys. Rev. E 77 041505
[4] Tanguy A, Mantisi B and Tsamados M 2010 Europhys. Lett. 90 16004
[5] Lerner E and Procaccia I 2009 Phys. Rev. E 79 066109
[6] Xu N and O'Hern C S 2006 Phys. Rev. E 73 061303
[7] Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
[8] Karmakar S, Lerner E, Procaccia I and Zylberg J 2010 Phys. Rev. E 82 031301
[9] Maloney C E and Lema?tre A 2006 Phys. Rev. E 74 016118
[10] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302
[11] Rottler J, Schoenholz S S and Liu A J 2014 Phys. Rev. E 89 042304
[12] Lacks D J 1998 Phys. Rev. Lett. 80 5385
[13] Karmakar S, Lerner E and Procaccia I 2010 Phys. Rev. E 82 026105
[14] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z, Liu A J and Yodh A G 2011 Phys. Rev. Lett. 107 108301
[15] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2009 J. Chem. Phys. 131 194508
[16] Brito C and Wyart M 2009 J. Chem. Phys. 131 024504
[17] Ashton D J and Garrahan J P 2009 Eur. Phys. J. E 30 303
[18] Gao G, B ?awzdziewicz J and O'Hern C S 2006 Phys. Rev. E 74 061304
[19] Smith K C, Srivastava I, Fisher T S and Alam M 2014 Phys. Rev. E 89 042203
[20] Maloney C and Lema?tre A 2004 Phys. Rev. Lett. 93 016001
[21] Heussinger C and Barrat J 2009 Phys. Rev. Lett. 102 218303
[22] Karmakar S, Lema?tre A, Lerner E and Procaccia I 2010 Phys. Rev. Lett. 104 215502
[23] Hentschel H G E, Ilyin V and Procaccia I 2012 Europhys. Lett. 99 26003
[24] Hentschel H G E, Karmakar S, Lerner E and Procaccia I 2011 Phys. Rev. E 83 061101
[25] Zhang G, Sun Q, Shi Z, Feng X, Gu Q and Jin F 2014 Chin. Phys. B 23 076301
[26] Xu N 2011 Front. Phys. 6 109
[27] Xu N, Vitelli V, Liu A J and Nagel S R 2010 Europhys. Lett. 90 56001
Related articles from Frontiers Journals
[1] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 126201
[2] Dong-Mei Li, Lan-Sheng Chen, Peng Yu, Ding Ding, and Lei Xia. A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties[J]. Chin. Phys. Lett., 2020, 37(8): 126201
[3] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 126201
[4] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 126201
[5] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 126201
[6] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 126201
[7] Wei-Dong Cheng, Chuan-Hui Ren, Xiao-Hua Gu, Zhao-Jun Wu, Xue-Qing Xing, Guang Mo, Zhong-Jun Chen, Zhong-Hua Wu. Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests[J]. Chin. Phys. Lett., 2017, 34(3): 126201
[8] Xu Zhang, Xiang-Cheng Zhang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model[J]. Chin. Phys. Lett., 2016, 33(10): 126201
[9] Xu Zhang, Zhi Wang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: A Theoretical Study of the Relation between the Avalanche Size and Duration[J]. Chin. Phys. Lett., 2016, 33(09): 126201
[10] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 126201
[11] ZHANG Xu, SHANG Fu-Lin. The Burst Time Duration in Micropillar Deformation[J]. Chin. Phys. Lett., 2014, 31(2): 126201
[12] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 126201
[13] ZHOU Kai, LI Hui, WANG Zhu . Plastic Deformation of Nanocrystalline Zinc Investigated by Positron Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(5): 126201
[14] CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales[J]. Chin. Phys. Lett., 2013, 30(4): 126201
[15] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 126201
Viewed
Full text


Abstract