Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 125201    DOI: 10.1088/0256-307X/32/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System
ZHANG Xiao-Hui, LIU A-Di**, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU et al  2015 Chin. Phys. Lett. 32 125201
Download: PDF(2026KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We compare three different methods to extract coherent modes from Doppler backscattering (DBS), which are center of gravity (COG) of the complex amplitude spectrum, spectrum of DBS phase derivative (phase derivative method), and phase spectrum, respectively. These three methods are all feasible to extract coherent modes, for example, geodesic acoustic mode oscillation. However, there are still differences between dealing with high frequency modes (several hundred kHz) and low frequency modes (several kHz) hiding in DBS signal. There is a significant amount of power at low frequencies in the phase spectrum, which can be removed by using the phase derivative method and COG. High frequency modes are clearer by using the COG and the phase derivative method than the phase spectrum. The spectrum of DBS amplitude does not show the coherent modes detected by using COG, phase derivative method and phase spectrum. When two Doppler shifted peaks exist, coherent modes and their harmonics appear in the spectrum of DBS amplitude, which are introduced by the DBS phase.
Received: 26 May 2015      Published: 05 January 2016
PACS:  52.35.Ra (Plasma turbulence)  
  52.25.Fi (Transport properties)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/125201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/125201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Hui
LIU A-Di
ZHOU CHU
HU Jian-Qiang
WANG Ming-Yuan
YU Chang-Xuan
LIU Wan-Dong
LI Hong
LAN Tao
XIE Jin-Lin
[1] Hillesheim J C et al 2009 Rev. Sci. Instrum. 80 083507
[2] Conway G D et al 2004 Plasma Phys. Control. Fusion 46 951
[3] Hennequin P et al 2004 Rev. Sci. Instrum. 75 3881
[4] Blanco E, Happel T and Estrada T 2010 Rev. Sci. Instrum. 81 10D901
[5] Xiao W W et al 2008 Plasma Sci. Technol. 10 403
[6] Yang Q W et al 2015 First EPS Conf. Plasma Diagnostics (Rome, Italy 14–17 April 2005) p 655
[7] Zhou C et al 2013 Rev. Sci. Instrum. 84 103511
[8] Trier E et al 2008 Nucl. Fusion 48 092001
[9] Conway G D et al 2008 Plasma Phys. Control. Fusion 50 055009
[10] Wang G et al 2006 Nucl. Fusion 46 S708
[11] Hirsch M et al 2001 Plasma Phys. Control. Fusion 43 1641
[12] Hillesheim J C et al 2013 Phys. Plasmas 20 056115
[13] Vermare L et al 2012 Nucl. Fusion 52 063008
[14] Hacquin S et al 2007 Plasma Phys. Control. Fusion 49 1371
[15] Sabot R et al 2006 Plasma Phys. Control. Fusion 48 B421
[16] Graca S da et al 2007 Plasma Phys. Control. Fusion 49 1849
[17] Winsor et al 1968 Phys. Fluids 11 2448
[18] Baonian W 2009 Nucl. Fusion 49 104011
[19] Estrada T, Happel T and Blanco E 2012 Nucl. Fusion 52 082002
[20] Estrada T et al 2009 Plasma Phys. Control. Fusion 51 124015
[21] Hillesheim J C et al 2010 Rev. Sci. Instrum. 81 10D907
Related articles from Frontiers Journals
[1] Wei Hu, Hong-Ying Feng, Wen-Lu Zhang. Comparison of ITG and TEM Microturbulence in DIII–D Tokamak[J]. Chin. Phys. Lett., 2019, 36(8): 125201
[2] Wei Hu, Hong-Ying Feng, Chao Dong. Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas[J]. Chin. Phys. Lett., 2018, 35(10): 125201
[3] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 125201
[4] Zhen-Wei Xia, Chun-Hua Li, Dan-Dan Zou, Wei-Hong Yang. Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2017, 34(1): 125201
[5] WANG Guan-Qiong, MA Jun, WEILAND J., ZAGORODNY A.. Excitation of Zonal Flows by ion-temperature-gradient Modes Excited by the Fluid Resonance[J]. Chin. Phys. Lett., 2015, 32(11): 125201
[6] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 125201
[7] A. A. Azooz,Y. A. Al-Jawaady,Z. T. Ali. Pressure and Discharge-Voltage Dependence of Self-Sustaining Pulses in Air-Glow Discharge[J]. Chin. Phys. Lett., 2012, 29(5): 125201
[8] CHEN Ran, XIE Jin-Lin**, YU Chang-Xuan, LIU A-Di, LAN Tao, ZHANG Shou-Biao, HU Guang-Hai, LI Hong, LIU Wan-Dong . Identification of Low-Frequency Zonal Flow in a Linear Magnetic Plasma Device[J]. Chin. Phys. Lett., 2011, 28(2): 125201
[9] XU Hui, SHENG Zheng-Ming, ZHENG Jun, XIA Yun-Jie. Generation of Broadband High Harmonics through Linear Mode Conversion in Inhomogeneous Plasmas[J]. Chin. Phys. Lett., 2010, 27(4): 125201
[10] DONG Li-Fang, FAN Wei-Li, WANG Hui-Juan, ZHANG Qing-Li, WANG Long. Nonlinear Interaction and Coherent Structure in Tokamak Plasma Turbulence[J]. Chin. Phys. Lett., 2006, 23(11): 125201
[11] LU Rong-Hua, PAN Ge-Sheng, WANG Zhi-Jiang, WEN Yi-Zhi, LIU Wan-Dong, WAN Shu-De, YU Chang-Xuan, WANG Jun, XIAO De-Long, XU Min. Effects of Dual-Electrode Biasing on Er in a Toroidal Plasma[J]. Chin. Phys. Lett., 2005, 22(6): 125201
[12] LIU Feng, DONG Jia-Qi, GAO Zhe. Electron Temperature Gradient Driven Instability in High Beta Plasmas of a Sheared Slab[J]. Chin. Phys. Lett., 2005, 22(5): 125201
[13] PANG Jin-Qiao, WU Ze-Qing, YAN Jun, HAN Guo-Xing. Theoretical Calculations of Opacity for Non-Local-Thermodynamic-Equilibrium Plasmas[J]. Chin. Phys. Lett., 2004, 21(10): 125201
[14] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. Naturally Occurring Velocity Shear Layer at the Plasma Edge of HT-7 Tokamak[J]. Chin. Phys. Lett., 2004, 21(1): 125201
[15] XU Guo-Sheng, WAN Bao-Nian, SONG-Mei. First Measurement of the Magnetic Turbulence Induced Reynolds Stress in a Tokamak[J]. Chin. Phys. Lett., 2003, 20(12): 125201
Viewed
Full text


Abstract