CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates |
PENG Xiao-Niu1, WANG Ya-Lan2, WANG Hao1** |
1Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062 2Microwave Photonics Laboratory, Wuhan Electronic Information Institute, Wuhan 430019
|
|
Cite this article: |
PENG Xiao-Niu, WANG Ya-Lan, WANG Hao 2015 Chin. Phys. Lett. 32 117802 |
|
|
Abstract The time-dependence evolution of the extinction spectra of the silver nanoplates is studied to analyze the underlying physical mechanism of the growth process. As the synthesis cycles increase, the wavelength of the absorption peak is first blue-shifted and then is followed by the red shift, attributing to the mode alteration of the longitudinal surface plasmon resonance of the silver nanoplates. The capping agents are also optimized for the convenient and speedy growth of the large integrated Ag nanostructure. These observations expand the comprehensive understanding of plasmon resonance of the Ag nanoplates, and give a better manipulation of their applications in the plasmonic nanodevices.
|
|
Received: 31 July 2015
Published: 01 December 2015
|
|
PACS: |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
52.25.Tx
|
(Emission, absorption, and scattering of particles)
|
|
78.40.Kc
|
(Metals, semimetals, and alloys)
|
|
|
|
|
[1] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419 [2] Li R Z, Hu A, Bridges D, Zhang T, Oakes K D, Peng R, Tumuluri U, Wu Z and Feng Z 2015 Nanoscale 7 7368 [3] Kim H Y, Rho W Y, Lee H Y, Park Y S and Suh J S 2014 Sol. Energy 109 61 [4] Tsai M W, Chuang T H, Chang H Y and Lee S C 2006 Appl. Phys. Lett. 88 213112 [5] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chon C T 2010 Nat. Mater. 9 707 [6] Soukoulis C M and Wegener M P 2011 Nat. Photon. 5 523 [7] Dorofeenko A V, Zyablovsky A A, Vinogradov A P, Andrianov E S, Pukhov A A and Lisyansky A A 2013 Opt. Express 21 14539 [8] Zhang Y, Charles D E, Ledwith D M, Aherne D, Cunningham S, Voisin M, Blau W, Gun'ko Y K, Kelly J M and Brennan-Fournet M E 2014 RSC Adv. 4 29022 [9] Lu H, Ren X, Sha W E I, Chen J, Kang Z, Zhang H, Ho H P and Choy W C H 2015 Sci. Rep. 5 7876 [10] Fu R, Liu G, Jia C, Li X, Tang X, Duan G, Li Y and Cai W 2015 Chem. Commun. 51 6609 [11] Chu H Y, Liu Y, Huang Y and Zhao Y 2007 Opt. Express 15 12230 [12] Wang K, Long H, Fu M, Yang G and Lu P X 2010 Chin. Phys. Lett. 27 124204 [13] Zhang D G, Wang P, Jiao X J, Sun X H, Yuan G H, Zhang J Y, Deng Y, Ming H, Sun Y Y, Zhou J L, Zhang Q J and Liu D M 2006 Chin. Phys. Lett. 23 2848 [14] Wiley B, Sun Y and Xia Y 2007 Acc. Chem. Res. 40 1067 [15] Ru E L and Etchegoin P 2009 Principles of Surface Enhanced Raman Spectroscopy (Oxford: Elsevier) [16] Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D and Xia Y 2011 Chem. Rev. 111 3669 [17] Mohamed K H, Naseri M G, Sadrolhosseini A R, Dehzangi A, Kamalianfar A, Saion E B, Zamiri R, Ahangar H A and Majlis B Y 2014 Chin. Phys. Lett. 31 077803 [18] Habas E, Lee H, Radmilovic V, Somorjai G A and Yang P 2007 Nat. Mater. 6 692 [19] Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J and Xu H 2010 Nano Lett. 10 1950 [20] Shegai T, Li Z, Dadosh T, Zhang Z, Xu H and Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448 [21] Jang H Y, Jang H J, Park D K, Yun W S and Park S 2015 Nanoscale 7 460 [22] Kong X Y, Ding Y, Yang R and Wang Z L 2004 Science 303 1348 [23] Sun Y and Xia Y 2002 Science 298 2176 [24] Jin R, Charles Cao Y, Hao E, Metraux G S, Schatz G C and Mirkin C A 1882 Nature 25 487 [25] Ce S, Chen Z, Wang L L, Zhao Y F, Duan G Y and Yu L 2014 Chin. Phys. Lett. 31 114202 [26] Jin R, Cao Y W, Mirkin C A, Kelly K L, Schatz G C and Zheng J G 2001 Science 294 1901 [27] Tao A R, Habas S and Yang P 2008 Small 4 310 [28] Zeng J, Xia X, Rycenga M, Henneghan P, Li Q and Xia Y 2011 Angew. Chem. Int. Ed. 50 244 [29] Chen S, Fan Z and Carroll D L 2002 J. Phys. Chem. B 106 10777 [30] Chen S and Carroll D L 2004 J. Phys. Chem. B 108 5500 [31] Zhang X Y, Hu A, Zhang T, Lei W, Xue X J, Zhou Y and Duley W W 2011 ACS Nano 5 9082 [32] Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M and Brus L 2008 J. Am. Chem. Soc. 130 9500 [33] Shen L, Ji J and Shen J 2008 Langmuir 24 9962 [34] Xia Y, Xiong Y, Lim B and Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60 [35] Kabashin A V, Delaporte Ph, Pereira A, Grojo D, Torres R, Sarnet Th and Sentis M 2010 Nanoscale Res. Lett. 5 454 [36] Zhang Q, Li W, Moran C, Chen J, Wen L P and Xia Y 2010 J. Am. Chem. Soc. 132 11372 [37] Jana N R, Gearheart L and Murphy C J 2001 Adv. Mater. 13 1389 [38] Pietrobon B, McEachran M and Kitaev V 2009 ACS Nano 3 21 [39] Sun Y, Yin Y, Mayers B T, Herricks T and Xia Y 2002 Chem. Mater. 14 4736 [40] Huo S J, Xue X K, Li Q X, Xu S F and Cai W B 2006 J. Phys. Chem. B 110 25721 [41] Kelly K, Coronado E, Zhao L and Schatz G 2003 J. Phys. Chem. B 107 66 [42] Cobley C M, Rycenga M, Zhou F, Li Z Y and Xia Y 2009 J. Phys. Chem. C 113 16975 [43] Shahbazyan T V, Perakis I E and Bigot J Y 1998 Phys. Rev. Lett. 81 3120 [44] Zeng J, Roberts S and Xia Y 2010 Chem. Eur. J. 16 12559 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|