Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 118401    DOI: 10.1088/0256-307X/32/11/118401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction
LI Li1, YU Dong1, WU Shi-Liang1, WANG Wei1, LIU Wen-Chao2, WU Xiao-Shan1, ZHANG Feng-Ming1**
1Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
2National Laboratory of Solid State Microstructures, Center of Photovoltaic Engineering and School of Modern Engineering and Applied Sciences, Nanjing University, Nanjing 210093
Cite this article:   
LI Li, YU Dong, WU Shi-Liang et al  2015 Chin. Phys. Lett. 32 118401
Download: PDF(1359KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new approach for enhancing the conversion efficiency of solar cells is proposed. A surface with columnar structures is employed on the fabrication of multi-crystalline silicon solar cells, for increasing the collection probability of photon-generated minority carriers in the cells. For comparison, three types of surfaces (planar surface, surfaces with columns of 12 μm in radius and columns of 9 μm in radius, respectively) are used. It is demonstrated that the cells with columnar structured surfaces have better spectral response and higher efficiencies than the cells with planar surface, while the cells with columns of 9 μm in radius show better spectral response than the cells with columns of 12 μm in radius. However, the cells with columns of 12 μm exhibit higher efficiencies than the cells with columns of 9 μm in radius for their difference in fill factors. Moreover, the effect of the columnar structured surface on the minority carrier collection efficiency is verified with wafers of different minority carrier lifetimes (0.5 μs and 1.0 μs). This work may significantly consider its potential in the manufacturing of high-efficiency solar cells at low cost by using low quality materials.
Received: 11 June 2015      Published: 01 December 2015
PACS:  84.60.-h (Direct energy conversion and storage)  
  84.60.Jt (Photoelectric conversion)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/118401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/118401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Li
YU Dong
WU Shi-Liang
WANG Wei
LIU Wen-Chao
WU Xiao-Shan
ZHANG Feng-Ming
[1] Panwar N et al 2011 Renewable Sustainable Energy Rev. 15 1513
[2] Asif M and Muneer T 2007 Renewable Sustainable Energy Rev. 11 1388
[3] Zhao J et al 1998 Appl. Phys. Lett. 73 1991
[4] Aberle A G 2009 Thin Solid Films 517 4706
[5] Hagfeldt A et al 2010 Chem. Rev. 110 6595
[6] Tuan M A et al 2012 Energy Convers. Manage. 53 68
[7] Ma W et al 2014 Chin. Phys. B 23 86801
[8] Liu M et al 2013 Nature 501 395
[9] Saga T 2010 NPG Asia Mater. 2 96
[10] Del Canizo C et al 2009 Prog. Photovolt.: Res. Appl. 17 199
[11] Swanson R M 2006 Prog. Photovolt.: Res. Appl. 14 443
[12] Goetzberger A, Luther J and Willeke G 2002 Sol. Energy Mater. Sol. Cells 74 1
[13] Xiang C P et al 2014 Chin. Phys. B 23 38803
[14] Jia Z N et al 2014 Chin. Phys. B 23 46106
[15] Chen F X, Wang L S and Xu W Y 2013 Chin. Phys. B 22 45202
[16] Papet P et al 2006 Sol. Energy Mater. Sol. Cells 90 2319
[17] Macdonald D et al 2004 Sol. Energy 76 277
[18] Yuan H C et al 2009 Appl. Phys. Lett. 95 123501
[19] Koynov S, Brandt M S and Stutzmann M 2006 Appl. Phys. Lett. 88 203107
[20] Stubenrauch M et al 2006 J. Micromech. Microeng. 16 S82
[21] Garnett E C et al 2011 Annu. Rev. Mater. Res. 41 269
[22] Jung J Y et al 2010 Nanotechnology 21 445303
[23] Garnett E C and Yang P 2008 J. Am. Chem. Soc. 130 9224
[24] Li J et al 2010 J. Phys. D: Appl. Phys. 43 255101
[25] Peng K Q and Lee S T 2011 Adv. Mater. 23 198
[26] Wang X et al 2010 J. Appl. Phys. 108 124303
[27] Seo K et al 2013 ACS Nano 7 3607
[28] Gharghi M et al 2012 Nano Lett. 12 6278
[29] Kelzenberg M D et al 2010 Nat. Mater. 9 368
[30] Putnam M C et al 2010 Energy Environ. Sci. 3 1037
[31] Kim D R et al 2011 Nano Lett. 11 2704
[32] Yang L et al 2012 Energy Convers. Manage. 54 30
[33] Kim D R et al 2012 Nano Lett. 12 6485
[34] Hu Y et al 2012 J. Appl. Phys. 112 104311
[35] Garnett E and Yang P 2010 Nano Lett. 10 1082
Related articles from Frontiers Journals
[1] Shan Hu, Pengyu Xu, Luize Scalco de Vasconcelos, Lia Stanciu, Hongwei Ni, and Kejie Zhao. Elastic Modulus, Hardness, and Fracture Toughness of Li$_{6.4}$La$_{3}$Zr$_{1.4}$Ta$_{0.6}$O$_{12}$ Solid Electrolyte[J]. Chin. Phys. Lett., 2021, 38(9): 118401
[2] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 118401
[3] Yu-Min Liu, Jing-Bin Lu, Xiao-Yi Li, Xu Xu, Rui He, Ren-Zhou Zheng, Guo-Dong Wei. Theoretical Prediction of Diamond Betavoltaic Batteries Performance Using $^{63}$Ni[J]. Chin. Phys. Lett., 2018, 35(7): 118401
[4] MENG Qing-Bo, LI Ke-Xin, LI Hong, FAN Yu-Zun, YU Zhe-Xun, LI Dong-Mei, LUO Yan-Hong, CHEN Li-Quan. A New Method for Generating Hydrogen from Water[J]. Chin. Phys. Lett., 2008, 25(9): 118401
Viewed
Full text


Abstract