Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117801    DOI: 10.1088/0256-307X/32/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning Photoluminescence Performance of Monolayer MoS2 via H2O2 Aqueous Solution
CHENG Ying, WANG Jun-Zhuan**, WEI Xiao-Xu, GUO Dan, WU Bing, YU Lin-Wei, WANG Xin-Ran, SHI Yi
Key Laboratory of Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
CHENG Ying, WANG Jun-Zhuan, WEI Xiao-Xu et al  2015 Chin. Phys. Lett. 32 117801
Download: PDF(950KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a simple while very effective approach to tune the photoluminescence (PL) performance of monolayer MoS2 by dipping into the H2O2 aqueous solution, which is a strong oxidizer that extracts electrons from the MoS2 sheet within several seconds without damaging the crystal structure. During this process, the trion (electron-coupled exciton, X?) is transformed into an exciton (Xo), and thus achieves a greatly enhanced PL performance. These results indicate a convenient way to tune and to control the PL luminescence from monolayer MoS2 and thus lay a basis for the MoS2-based optoelectronic application.
Received: 12 June 2015      Published: 01 December 2015
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.40.Fy (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Ying
WANG Jun-Zhuan
WEI Xiao-Xu
GUO Dan
WU Bing
YU Lin-Wei
WANG Xin-Ran
SHI Yi
[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[3] Li X M, Long M Q, Cui L L, Xiao J and Xu H 2014 Chin. Phys. B 23 047307
[4] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[5] Sundaram R, Engel M, Lombardo A, Krupke R, Ferrari A, Avouris P and Steiner M 2013 Nano Lett. 13 1416
[6] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[7] Zhang W, Chu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chu Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826
[8] Dolui K, Rungger I and Sanvito S 2013 Phys. Rev. B 87 165402
[9] Wei X X, Cheng Y, Huo D, Zhang Y H and Wang J Z 2014 Acta Phys. Sin. 63 217820 (in Chinese)
[10] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2012 Nat. Mater. 12 207
[11] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D and Yao W 2013 Nat. Commun. 4 1474
[12] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[13] Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C and Wu J 2013 Nano Lett. 13 2831
[14] Wei X X, Yu Z H, Hu F R, Cheng Y, Yu L W, Wang X Y, Xiao M, Wang J Z, Wang X R and Shi Y 2014 AIP Adv. 4 123004
[15] Ruiz V, Meux E, Schneider M and Georgeaud V 2011 Ind. Eng. Chem. Res. 50 5307
[16] Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D and Lu H 2014 Chem. Commun. 50 15936
[17] Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J and Li M 2013 Anal. Chem. 85 10289
[18] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[19] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[20] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 7 1385
[21] Mao N, Chen Y, Liu D, Zhang J and Xie L 2013 Small 9 1312
[22] Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V and Sood A K 2012 Phys. Rev. B 85 161403
[23] Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 117801
[2] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 117801
[3] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 117801
[4] Sibai Sun, Jianchen Dang, Xin Xie, Yang Yu, Longlong Yang, Shan Xiao, Shiyao Wu, Kai Peng, Feilong Song, Yunuan Wang, Jingnan Yang, Chenjiang Qian, Zhanchun Zuo, and Xiulai Xu. Large Photoluminescence Enhancement by an Out-of-Plane Magnetic Field in Exfoliated WS$_2$ Flakes[J]. Chin. Phys. Lett., 2020, 37(8): 117801
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 117801
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 117801
[7] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 117801
[8] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 117801
[9] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 117801
[10] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 117801
[11] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 117801
[12] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 117801
[13] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 117801
[14] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 117801
[15] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 117801
Viewed
Full text


Abstract