CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Tuning Photoluminescence Performance of Monolayer MoS2 via H2O2 Aqueous Solution |
CHENG Ying, WANG Jun-Zhuan**, WEI Xiao-Xu, GUO Dan, WU Bing, YU Lin-Wei, WANG Xin-Ran, SHI Yi |
Key Laboratory of Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
CHENG Ying, WANG Jun-Zhuan, WEI Xiao-Xu et al 2015 Chin. Phys. Lett. 32 117801 |
|
|
Abstract We demonstrate a simple while very effective approach to tune the photoluminescence (PL) performance of monolayer MoS2 by dipping into the H2O2 aqueous solution, which is a strong oxidizer that extracts electrons from the MoS2 sheet within several seconds without damaging the crystal structure. During this process, the trion (electron-coupled exciton, X?) is transformed into an exciton (Xo), and thus achieves a greatly enhanced PL performance. These results indicate a convenient way to tune and to control the PL luminescence from monolayer MoS2 and thus lay a basis for the MoS2-based optoelectronic application.
|
|
Received: 12 June 2015
Published: 01 December 2015
|
|
PACS: |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.40.Fy
|
(Semiconductors)
|
|
|
|
|
[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [2] Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 [3] Li X M, Long M Q, Cui L L, Xiao J and Xu H 2014 Chin. Phys. B 23 047307 [4] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201 [5] Sundaram R, Engel M, Lombardo A, Krupke R, Ferrari A, Avouris P and Steiner M 2013 Nano Lett. 13 1416 [6] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815 [7] Zhang W, Chu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chu Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826 [8] Dolui K, Rungger I and Sanvito S 2013 Phys. Rev. B 87 165402 [9] Wei X X, Cheng Y, Huo D, Zhang Y H and Wang J Z 2014 Acta Phys. Sin. 63 217820 (in Chinese) [10] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2012 Nat. Mater. 12 207 [11] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D and Yao W 2013 Nat. Commun. 4 1474 [12] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944 [13] Tongay S, Zhou J, Ataca C, Liu J, Kang J S, Matthews T S, You L, Li J, Grossman J C and Wu J 2013 Nano Lett. 13 2831 [14] Wei X X, Yu Z H, Hu F R, Cheng Y, Yu L W, Wang X Y, Xiao M, Wang J Z, Wang X R and Shi Y 2014 AIP Adv. 4 123004 [15] Ruiz V, Meux E, Schneider M and Georgeaud V 2011 Ind. Eng. Chem. Res. 50 5307 [16] Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D and Lu H 2014 Chem. Commun. 50 15936 [17] Wang T, Zhu H, Zhuo J, Zhu Z, Papakonstantinou P, Lubarsky G, Lin J and Li M 2013 Anal. Chem. 85 10289 [18] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [19] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [20] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 7 1385 [21] Mao N, Chen Y, Liu D, Zhang J and Xie L 2013 Small 9 1312 [22] Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V and Sood A K 2012 Phys. Rev. B 85 161403 [23] Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|