CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids |
WU Zi-Hua, XIE Hua-Qing**, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui |
Department of Materials Engineering, College of Engineering, Shanghai Second Polytechnic University, Shanghai 201209
|
|
Cite this article: |
WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan et al 2015 Chin. Phys. Lett. 32 117303 |
|
|
Abstract Organic–inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic–inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1?xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zn0.9Ag0.1O matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunction effect and a reduction in thermal conductivity. Zn0.9Ag0.1O/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT = 0.22.
|
|
Received: 08 July 2015
Published: 01 December 2015
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
84.60.Bk
|
(Performance characteristics of energy conversion systems; figure of merit)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
|
|
|
[1] Shen L X, Shai X X and Dong G J 2013 Acta Phys. Sin. 62 247401 (in Chinese) [2] Wu Z H, Xie H Q and Zhai Y B 2013 Appl. Phys. Lett. 103 243901 [3] Wang W J, Zhang Q H, Li J L, Liu X, Wang L J, Zhu J J, Luo W and Jiang W 2015 RSC Adv. 5 8988 [4] Pei Y, Lensch F J, Toberer E S, Medlin D L and Snyder G J 2011 Adv. Funct. Mater. 21 241 [5] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 34402 [6] Stein N, Peterman N, Theissmann R, Schierning G, Schmechel R and Wiggers H 2011 J. Mater. Res. 26 1872 [7] Zhang Q L, Jang W J, Li J L, Zhu J J, Wang L J, Zhua M F and Jiang W 2013 J. Mater. Chem. A 1 12109 [8] Kim K, Debnath P C, Lee D H, Kim S and Lee S Y 2011 Nanoscale Res. Lett. 6 552 [9] Zhang Q H, Ai X, Wang L J, Chang Y X, Luo W, Jiang W and Chen L D 2015 Adv. Funct. Mater. 25 966 [10] Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817 [11] Zhang Q H, Ai X, Wang W J, Wang L J and Jiang W 2014 Acta Mater. 73 37 [12] Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca T T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337 [13] Jung K H, Lee K H, Seo W S and Choi S M 2012 Appl. Phys. Lett. 100 253902 [14] Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957 [15] Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816 [16] Malen J A, Yee S K, Majumdar A and Segalman R A 2010 Chem. Phys. Lett. 491 109 [17] Baheti K, Malen A, Doak P, Reddy P, Jang S, Tilley T, Majumdar A and Segalman A 2008 Nano Lett. 8 715 [18] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664 [19] Wang Y Y, Cai K F, Yin J L, An B J, Du Y and Yao X 2011 J. Nanopart. Res. 13 533 [20] Anno H, Fukamoto M, Heta Y, Koga K, Itahara H, Asahi R, Satomura R, Sannomiya M and Toshima N 2009 J. Electron. Mater. 38 1443 [21] Pintér E, Fekete Z A, Berkesi O, Makra P, Patzkó á and Visy C 2007 J. Phys. Chem. C 111 11872 [22] Du Y, Cai K, Shen S, An B, Qin Z and Casey P 2012 J. Mater. Sci.: Mater. Electron. 23 870 [23] Ueno H and Yoshino K 1986 J. Phys. Soc. Jpn. 55 4382 [24] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E M, Cheong S A and Wu T 2011 Appl. Phys. Lett. 99 222511 [25] Fan J W and Freer R 1995 J. Appl. Phys. 77 4795 [26] Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802 [27] Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A and Kaminska E 2009 Phys. Rev. B 80 245212 [28] Faleev S V and Léonard F 2008 Phys. Rev. B 77 214304 [29] Medlin D L and Snyder G J 2009 Curr. Opin. Colloid. 14 226 [30] Sumithra S, Takas N J, Misra D K, Nolting W M, Poudeu P F and Stokes K L 2011 Adv. Energy Mater. 1 1141 [31] Heremans J P, Thrush C M and Morelli D T 2005 J. Appl. Phys. 98 063703 [32] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436 [33] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 [34] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568 [35] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A and Maris H J 2003 J. Appl. Phys. 93 793 [36] Kuo S W, Li J C and Schmid A W 1992 Appl. Phys. A 55 289 [37] Asheghi M, Leung Y K, Wong S S and Goodson K E 1997 Appl. Phys. Lett. 71 1798 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|