Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117304    DOI: 10.1088/0256-307X/32/11/117304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots
Solaimani M.**
Department of Physics, Qom University of technology, Qom, Iran
Cite this article:   
Solaimani M. 2015 Chin. Phys. Lett. 32 117304
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the procedure of miniband formation in GaN/AlN constant-total-effective-radius multi-shell quantum dots (CTER-MSQDs) by calculating the subband energies. We find a different behavior of the miniband widths and miniband gaps when the number of wells changes. It is shown that with increasing the inner quantum dot radius Rin, the number of minigaps decreases; with increasing the outer quantum dot radius Rout, the number of minigaps increases. We show that in the CTER-MSQDs systems, two kinds of minigaps exist: in the type (i) ones, minigaps increase monotonically when the number of wells increases while in the type (ii) ones, with increasing the number of wells, some of minigaps create, increase, at a critical number of wells decrease and finally vanish. Thus tuning of the minigaps and miniband widths in the CTER-MSQDs systems by using the number of wells, inner and outer quantum dot radii Rin and Rout is now possible.
Received: 31 May 2015      Published: 01 December 2015
PACS:  73.21.Cd (Superlattices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117304       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Solaimani M.
[1] Klappenberger F, Ignatov A A, Winnerl S, Schomburg E, Wegscheider W and Renk K F 2001 Appl. Phys. Lett. 78 1674
[2] Giorgetta F R, Baumann E, Graf M, Ajili L, Hoyler N, Giovannini M, Faist J and Hofstetter D, Kr?tz P and Sonnabend G 2007 Appl. Phys. Lett. 90 231111
[3] Willenberg H, Dohler G H and Faist J 2003 Phys. Rev. B 67 085315
[4] Klos J W and Krawczyk M 2008 Materials Science-Poland 26 965
[5] Behn U, Linder N, Grahn H T and Ploog K 1995 Phys. Rev. B 51 17271
[6] Pusep Y A, Chiquito A J, Mergulhao S and Galzerani J C 1997 Phys. Rev. B 56 3892
[7] Hyldgaard P and Jauho A P 1990 J. Phys.: Condens. Matter 2 8725
[8] Holthaus M 1992 Phys. Rev. Lett. 69 351
[9] Zhao X G 1997 Phys. Lett. A 230 229
[10] Shimada Y, Hirakawa K and Lee S W 2002 Appl. Phys. Lett. 81 1642
[11] Grahn H T, Klitzing K V Ploog K and Dohler G H 1991 Phys. Rev. B 43 12094
[12] Cota E, Jose J V and Monsivais G 1987 Phys. Rev. B 35 8929
[13] Lunz U, Keim M, Reuscher G, Fischer F, Schull K, Waag A and Landwehr G 1996 J. Appl. Phys. 80 6329
[14] Carpena P, Gasparian V and Ortuno M 1997 Z. Phys. B 102 425
[15] Chen S D, Narayan C and Karakashian A S 1996 Physica B 228 239
[16] Ferreira R and Bastard G 1997 Rep. Prog. Phys. 60 345
[17] Zhu J X, Wang Z D and Gong C D 1996 J. Appl. Phys. 80 2291
[18] Carpena P 1997 Phys. Lett. A 231 439
[19] Bouchard A M and Luban M 1995 Phys. Rev. B 52 5105
[20] Zekri N, Schreiber M, Ouasti R, Bouamrane R and Brezini A 1995 Z. Phys. B 99 381
[21] Cai X B and Xuan X F 2004 Opt. Commun. 240 227
[22] Saldana X I, Contreras-Solorio D A and Lopez-Cruz E 2007 Revista Mex. Física 53 310
[23] Ferry D K, Goodnick S M and Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press) 2nd edn chap 2 p 40
[24] Harrison P 2005 Quantum Wells, Wires and Dots, Theoretical and Computational Physics of Semiconductor Nanostructures 2nd edn (New York: John Wiley & Sons) chap 2 p 55
[25] Chang K 2000 Phys. Rev. B 61 4743
[26] Chang K and Xia J B 1998 Phys. Rev. B 57 9780
[27] Solaimani M, Izadifard M, Arabshahi H and Sarkardei M R 2013 J. Lumin. 134 699
[28] Solaimani M, Izadifard M, Arabshahi H and Sarkardei M R 2013 J. Lumin. 134 88
[29] Solaimani M 2014 Solid State Commun. 200 66
[30] Solaimani M, Lavaei L and Ghalandari M 2015 Superlattices Microstruct. 82 1
[31] Widmann F, Daudin B, Feuillet G, Samson Y, Rouviere J L and Pelekanos N 1998 J. Appl. Phys. 83 7618
[32] Moumanis K, Helman A, Fossard F, Tchernycheva M, Lusson A and Julien F H, Damilano B, Grandjean N and Massies J 2003 Appl. Phys. Lett. 82 869
[33] Songmuang R, Kalita D, Sinha P, Hertog M, André R, Ben T, González D, Mariette H and Monroy E 2011 Appl. Phys. Lett. 99 141914
[34] Lv W, Wang L, Wang J, Hao Z and Luo Y 2012 Nanoscale Res. Lett. 7 617
[35] Lv W, Wang, Wang J, Xing Y, Zheng J, Yang D, Hao Z and Luo Y 2013 Jpn. J. Appl. Phys. 52 08JG13
[36] Chari M V K and Salon S J 2000 Numerical Methods in Electromagnetism (New York: Academic Press) chap 2 p 80
[37] Vurgaftman I Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 117304
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 117304
[3] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 117304
[4] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 117304
[5] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 117304
[6] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 117304
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 117304
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 117304
[9] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 117304
[10] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 117304
[11] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 117304
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 117304
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 117304
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 117304
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 117304
Viewed
Full text


Abstract