CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices |
HE Ze-Zhao1,2, YANG Ke-Wu1,2, YU Cui2, LI Jia2, LIU Qing-Bin2, LU Wei-Li2, FENG Zhi-Hong2**, CAI Shu-Jun2 |
1School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300130 2National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051
|
|
Cite this article: |
HE Ze-Zhao, YANG Ke-Wu, YU Cui et al 2015 Chin. Phys. Lett. 32 117204 |
|
|
Abstract We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 Ω?mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4H-SiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance Rc of bilayer graphene improves from an average of 0.24 Ω?mm to 0.1 Ω?mm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density, high carrier transmission probability, and p-type doping introduced by contact metal Au.
|
|
Received: 10 August 2015
Published: 01 December 2015
|
|
PACS: |
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
|
|
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Schwierz F 2010 Nat. Nanotechnol. 5 487 [3] Lemme M C, Echtermeyer T J, Baus M et al 2007 IEEE Electron Device Lett. 28 282 [4] Sun L F, Dong L M, Fang C et al 2013 Chin. Phys. B 22 077201 [5] Yu C, Li J, Liu Q B et al 2014 Acta Phys. Sin. 63 038102 (in Chinese) [6] Cheng R, Bai J, Liao L et al 2012 Proc. Natl. Acad. Sci. USA 109 11588 [7] Moon J S, Antcliffe M, Seo H C et al 2012 Appl. Phys. Lett. 100 203512 [8] Leong W S, Gong H and Thong J T 2014 ACS Nano 8 994 [9] Xia F, Perebeinos V, Lin Y et al 2011 Nat. Nanotechnol. 6 179 [10] Robinson J A, LaBella M, Zhu M et al 2011 Appl. Phys. Lett. 98 053103 [11] Li W, Liang Y, Yu D et al 2013 Appl. Phys. Lett. 102 183110 [12] Smith J T, Franklin A D, Farmer D B et al 2013 ACS Nano 7 3661 [13] Franklin A D, Han S J, A A Bol et al 2012 IEEE Electron Device Lett. 33 17 [14] Balci O and Kocabas C 2012 Appl. Phys. Lett. 101 243105 [15] Zhang Y, Tang T T, Girit C et al 2009 Nature 459 820 [16] Yu C, Liu Q B, Li J et al 2014 Appl. Phys. Lett. 105 183105 [17] Nyakiti L O, Myers-Ward R L, Wheeler V D et al 2012 Nano Lett. 12 1749 [18] Lin Y M, Farmer D B, Jenkins K A et al 2011 IEEE Electron Device Lett. 32 1343 [19] Feng Z H, Yu C Li J et al 2014 Carbon 75 249 [20] Giovannetti G, Khomyakov P A, Brocks G et al 2008 Phys. Rev. Lett. 101 026803 [21] Datta S 1999 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) chap 2 p 57 [22] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|