Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117204    DOI: 10.1088/0256-307X/32/11/117204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices
HE Ze-Zhao1,2, YANG Ke-Wu1,2, YU Cui2, LI Jia2, LIU Qing-Bin2, LU Wei-Li2, FENG Zhi-Hong2**, CAI Shu-Jun2
1School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300130
2National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051
Cite this article:   
HE Ze-Zhao, YANG Ke-Wu, YU Cui et al  2015 Chin. Phys. Lett. 32 117204
Download: PDF(831KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 Ω?mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4H-SiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance Rc of bilayer graphene improves from an average of 0.24 Ω?mm to 0.1 Ω?mm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density, high carrier transmission probability, and p-type doping introduced by contact metal Au.
Received: 10 August 2015      Published: 01 December 2015
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.40.Cg (Contact resistance, contact potential)  
  73.40.Sx (Metal-semiconductor-metal structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Ze-Zhao
YANG Ke-Wu
YU Cui
LI Jia
LIU Qing-Bin
LU Wei-Li
FENG Zhi-Hong
CAI Shu-Jun
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Schwierz F 2010 Nat. Nanotechnol. 5 487
[3] Lemme M C, Echtermeyer T J, Baus M et al 2007 IEEE Electron Device Lett. 28 282
[4] Sun L F, Dong L M, Fang C et al 2013 Chin. Phys. B 22 077201
[5] Yu C, Li J, Liu Q B et al 2014 Acta Phys. Sin. 63 038102 (in Chinese)
[6] Cheng R, Bai J, Liao L et al 2012 Proc. Natl. Acad. Sci. USA 109 11588
[7] Moon J S, Antcliffe M, Seo H C et al 2012 Appl. Phys. Lett. 100 203512
[8] Leong W S, Gong H and Thong J T 2014 ACS Nano 8 994
[9] Xia F, Perebeinos V, Lin Y et al 2011 Nat. Nanotechnol. 6 179
[10] Robinson J A, LaBella M, Zhu M et al 2011 Appl. Phys. Lett. 98 053103
[11] Li W, Liang Y, Yu D et al 2013 Appl. Phys. Lett. 102 183110
[12] Smith J T, Franklin A D, Farmer D B et al 2013 ACS Nano 7 3661
[13] Franklin A D, Han S J, A A Bol et al 2012 IEEE Electron Device Lett. 33 17
[14] Balci O and Kocabas C 2012 Appl. Phys. Lett. 101 243105
[15] Zhang Y, Tang T T, Girit C et al 2009 Nature 459 820
[16] Yu C, Liu Q B, Li J et al 2014 Appl. Phys. Lett. 105 183105
[17] Nyakiti L O, Myers-Ward R L, Wheeler V D et al 2012 Nano Lett. 12 1749
[18] Lin Y M, Farmer D B, Jenkins K A et al 2011 IEEE Electron Device Lett. 32 1343
[19] Feng Z H, Yu C Li J et al 2014 Carbon 75 249
[20] Giovannetti G, Khomyakov P A, Brocks G et al 2008 Phys. Rev. Lett. 101 026803
[21] Datta S 1999 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) chap 2 p 57
[22] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 117204
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 117204
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 117204
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 117204
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 117204
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 117204
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 117204
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 117204
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 117204
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 117204
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 117204
[12] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 117204
[13] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 117204
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 117204
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 117204
Viewed
Full text


Abstract