CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer |
JIAO Bo1, YAO Li-Juan1, WU Chun-Fang2, DONG Hua1, HOU Xun1, WU Zhao-Xin1** |
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shannxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049 2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
|
|
Cite this article: |
JIAO Bo, YAO Li-Juan, WU Chun-Fang et al 2015 Chin. Phys. Lett. 32 117301 |
|
|
Abstract Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR is observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.
|
|
Received: 17 August 2015
Published: 01 December 2015
|
|
PACS: |
73.21.La
|
(Quantum dots)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
|
|
|
[1] Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593 [2] Park T J, Lee Y K, Kwon S K, Kwon J H and Jang J 2006 Appl. Phys. Lett. 89 151114 [3] Xu X H, Han M C and Yin S G 2003 Chin. J. Lumin. 24 459 [4] Wang Z, Wang T, Wang H B and Yan D H 2014 Adv. Mater. 26 4582 [5] Zheng T, Choy W C H and Sun Y 2009 Adv. Funct. Mater. 19 2648 [6] Zheng T, Choy W C H and Sun Y 2009 Appl. Phys. Lett. 94 123303 [7] Kannan V, Rajesh K R, Kim M R, Chae Y S and Rhee J K 2011 Appl. Phys. A 102 611 [8] Kannan V, Kim M R, Chae Y S, Ramana C V V and Rhee J K 2011 Nanotechnology 22 025705 [9] Yang S, Liu P, Guo S, Zhang L, Yang D, Jiang Y and Zou B 2014 Appl. Phys. Lett. 104 033301 [10] Tang W, Shi H Z, Xu G, Ong B S, Popovic Z D, Deng J C, Zhao J and Rao G H 2005 Adv. Mater. 17 2307 [11] Shin M, Lee S, Park K W and Lee E H 1998 Phys. Rev. Lett. 80 5774 [12] Shin M, Lee S, Park K W and Lee E H 1999 Phys. Rev. B 59 3160 [13] Gorman C B, Carroll R L and Fuierer R R 2001 Langmuir 17 6923 [14] Berleb S, Brütting W and Schwoerer M 1999 Synth. Met. 102 1034 [15] Qu L and Peng X 2002 J. Am. Chem. Soc. 124 2049 [16] Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 2854 [17] Jiao B, Zhu X B, Wu Z X, Yu Y and Hou X 2014 Chin. Phys. Lett. 31 097801 [18] Zhang S T, Wang Z J, Zhao J M, Zhan Y Q, Wu Y, Zhou Y C, Ding X M and Hou X Y 2004 Appl. Phys. Lett. 84 2916 [19] Barth S, Müller P, Riel H, Seidler P F, Rie? W, Vestweber H and B ?ssler H 2001 J. Appl. Phys. 89 3711 [20] Chen P, Xie W F, Li J Guan T, Duan Y, Zhao Y, Liu S Y, Ma C S, Zhang L Y and Li B 2007 Appl. Phys. Lett. 91 073511 [21] Jiao B, Wu Z X, Yan X W and Hou X 2010 Appl. Phys. A 98 239 [22] Tse S C, Kwok K C and So S K 2006 Appl. Phys. Lett. 89 262102 [23] Deng Z B, Lee S T, Webb D P, Chan Y C and Gambling W A 1999 Synth. Met. 107 107 [24] Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S and Imai K 1994 Appl. Phys. Lett. 65 807 [25] Noh S, Suman C K, Hong Y and Lee C 2009 J. Appl. Phys. 105 033709 [26] Dakhlaoui H 2013 Chin. Phys. Lett. 30 077304 [27] Bassler H 1993 Phys. Status Solidi B 175 15 [28] Simmons J G 1965 Phys. Rev. Lett. 15 967 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|