CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector |
WENG Qian-Chun1, AN Zheng-Hua2,3**, XIONG Da-Yuan1, ZHU Zi-Qiang1 |
1Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai 200241 2State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Fudan University, Shanghai 200433 3Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433
|
|
Cite this article: |
WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan et al 2015 Chin. Phys. Lett. 32 108503 |
|
|
Abstract Excited states of InAs quantum dots (QDs) can be energetically coupled with the confined level of GaAs quantum wells (QWs) in a thin-barrier resonant tunneling diode (RTD). Single charge variation in the coupled QD can effectively switch on/off the resonant tunneling current passing through RTD, not only for efficient single-photon detection but also for photon-number-resolving detection. We present the study of the QD–QW coupling effect in the quantum dot coupled resonant tunneling diode (QD-cRTD) and figure out important factors for further improving the detector performance.
|
|
Received: 27 April 2015
Published: 30 October 2015
|
|
PACS: |
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
|
|
|
[1] Blakesley J C, See P, Shields A J, Kardyna? B E, Atkinson P, Farrer I and Ritchie D A 2005 Phys. Rev. Lett. 94 067401 [2] Li H W, Kardynal B E, Ellis D J P, Shields A J, Farrer I and Ritchie D A 2008 Appl. Phys. Lett. 93 153503 [3] Wang W P, Hou Y, Xiong D Y, Li N, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2008 Appl. Phys. Lett. 92 023508 [4] Weng Q C, An Z H, Zhu Z Q, Song J D and Choi W J 2014 Appl. Phys. Lett. 104 051113 [5] Li H W, Kardynal B E, See P, Shields A J, Simmonds P, Beere H E and Ritchie D A 2007 Appl. Phys. Lett. 91 073516 [6] Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q and Lu W 2014 Appl. Phys. Lett. 105 031114 [7] Hadfield R H 2009 Nat. Photon. 3 696 [8] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 [9] Nilsson J, Stevenson R M, Chan K H A, Skiba-Szymanska J, Lucamarini M, Ward M B, Bennett A J, Salter C L, Farrer I, Ritchie D A and Shields A J 2013 Nat. Photon. 7 311 [10] Shields A J 2007 Nat. Photon. 1 215 [11] Kardynal B E, Yuan Z L and Shields A J 2008 Nat. Photon. 2 425 [12] Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Hadfield R H, Nam S W and Mirin R P 2007 Nat. Photon. 1 585 [13] Weng Q C, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q and Lu W 2015 Sci. Rep. 5 9389 [14] Wang J, Beton P H, Mori N, Buhmann H, Mansouri L, Eaves L, Main P C, Foster T J and Henini M 1994 Appl. Phys. Lett. 65 1124 [15] Wang W P, Hou Y, Li N, Li Z F, Chen X S, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2009 Appl. Phys. Lett. 94 093511 [16] Hees S S, Kardynal B E, Shields A J, Farrer I and Ritchie D A 2008 New J. Phys. 10 013027 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|