Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 108503    DOI: 10.1088/0256-307X/32/10/108503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Quantum Coupling Effect between Quantum Dot and Quantum Well in a Resonant Tunneling Photon-Number-Resolving Detector
WENG Qian-Chun1, AN Zheng-Hua2,3**, XIONG Da-Yuan1, ZHU Zi-Qiang1
1Key Laboratory of Polar Materials and Devices (Ministry of Education), East China Normal University, Shanghai 200241
2State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Fudan University, Shanghai 200433
3Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433
Cite this article:   
WENG Qian-Chun, AN Zheng-Hua, XIONG Da-Yuan et al  2015 Chin. Phys. Lett. 32 108503
Download: PDF(604KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Excited states of InAs quantum dots (QDs) can be energetically coupled with the confined level of GaAs quantum wells (QWs) in a thin-barrier resonant tunneling diode (RTD). Single charge variation in the coupled QD can effectively switch on/off the resonant tunneling current passing through RTD, not only for efficient single-photon detection but also for photon-number-resolving detection. We present the study of the QD–QW coupling effect in the quantum dot coupled resonant tunneling diode (QD-cRTD) and figure out important factors for further improving the detector performance.
Received: 27 April 2015      Published: 30 October 2015
PACS:  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/108503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/108503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WENG Qian-Chun
AN Zheng-Hua
XIONG Da-Yuan
ZHU Zi-Qiang
[1] Blakesley J C, See P, Shields A J, Kardyna? B E, Atkinson P, Farrer I and Ritchie D A 2005 Phys. Rev. Lett. 94 067401
[2] Li H W, Kardynal B E, Ellis D J P, Shields A J, Farrer I and Ritchie D A 2008 Appl. Phys. Lett. 93 153503
[3] Wang W P, Hou Y, Xiong D Y, Li N, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2008 Appl. Phys. Lett. 92 023508
[4] Weng Q C, An Z H, Zhu Z Q, Song J D and Choi W J 2014 Appl. Phys. Lett. 104 051113
[5] Li H W, Kardynal B E, See P, Shields A J, Simmonds P, Beere H E and Ritchie D A 2007 Appl. Phys. Lett. 91 073516
[6] Weng Q C, An Z H, Xiong D Y, Zhang B, Chen P P, Li T X, Zhu Z Q and Lu W 2014 Appl. Phys. Lett. 105 031114
[7] Hadfield R H 2009 Nat. Photon. 3 696
[8] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[9] Nilsson J, Stevenson R M, Chan K H A, Skiba-Szymanska J, Lucamarini M, Ward M B, Bennett A J, Salter C L, Farrer I, Ritchie D A and Shields A J 2013 Nat. Photon. 7 311
[10] Shields A J 2007 Nat. Photon. 1 215
[11] Kardynal B E, Yuan Z L and Shields A J 2008 Nat. Photon. 2 425
[12] Gansen E J, Rowe M A, Greene M B, Rosenberg D, Harvey T E, Su M Y, Hadfield R H, Nam S W and Mirin R P 2007 Nat. Photon. 1 585
[13] Weng Q C, An Z H, Zhang B, Chen P P, Chen X S, Zhu Z Q and Lu W 2015 Sci. Rep. 5 9389
[14] Wang J, Beton P H, Mori N, Buhmann H, Mansouri L, Eaves L, Main P C, Foster T J and Henini M 1994 Appl. Phys. Lett. 65 1124
[15] Wang W P, Hou Y, Li N, Li Z F, Chen X S, Lu W, Wang W X, Chen H, Zhou J M, Wu E and Zeng H P 2009 Appl. Phys. Lett. 94 093511
[16] Hees S S, Kardynal B E, Shields A J, Farrer I and Ritchie D A 2008 New J. Phys. 10 013027
Related articles from Frontiers Journals
[1] Yu Ma, Wei-Jiang Li Yun-Fei, Xu, Jun-Qi Liu, Ning Zhuo, Ke Yang, Jin-Chuan Zhang, Shen-Qiang Zhai, Shu-Man Liu, Li-Jun Wang, and Feng-Qi Liu. Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm[J]. Chin. Phys. Lett., 2023, 40(1): 108503
[2] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 108503
[3] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 108503
[4] CHEN Di, ZHAO Bai-Qin, ZHANG Xin. High Signal-to-Noise Ratio Hall Devices with a 2D Structure of Dual δ-Doped GaAs/AlGaAs for Low Field Magnetometry[J]. Chin. Phys. Lett., 2015, 32(12): 108503
[5] LI Yuan-Yuan, LIU Jun-Qi, WANG Tao, LIU Feng-Qi, ZHAI Shen-Qiang, ZHANG Jin-Chuan, ZHUO Ning, WANG Li-Jun, LIU Shu-Man, WANG Zhan-Guo. High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz[J]. Chin. Phys. Lett., 2015, 32(10): 108503
[6] LI Di, JIA Li-Fang, FAN Zhong-Chao, CHENG Zhe, WANG Xiao-Dong, YANG Fu-Hua, HE Zhi. The Cu Based AlGaN/GaN Schottky Barrier Diode[J]. Chin. Phys. Lett., 2015, 32(06): 108503
[7] ZHAO Miao, LIU Xin-Yu. Analysis of Capacitance-Voltage-Temperature Characteristics of GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2015, 32(4): 108503
[8] WANG Chong, ZHANG Kun, HE Yun-Long, ZHENG Xue-Feng, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue. Effects of Annealing on Schottky Characteristics in AlGaN/GaN HEMT with Transparent Gate Electrode[J]. Chin. Phys. Lett., 2014, 31(12): 108503
[9] WANG Chong, HE Yun-Long, DING Ning, ZHENG Xue-Feng, ZHANG Peng, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue. Simulation and Experimentation for Low Density Drain AlGaN/GaN HEMT[J]. Chin. Phys. Lett., 2014, 31(03): 108503
[10] MU Zhi-Qiang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, CHEN Ming. Electrical Characteristics of High Mobility Si/Si0.5Ge0.5/SOI Quantum-Well p-MOSFETs with a Gate Length of 100 nm and an Equivalent Oxide Thickness of 1.1 nm[J]. Chin. Phys. Lett., 2013, 30(10): 108503
[11] YANG Xiao-Hong, LIU Shao-Qing, NI Hai-Qiao, LI Mi-Feng, LI Liang, HAN Qin, NIU Zhi-Chuan. High Quality Pseudomorphic In0.24 GaAs/GaAs Multi-Quantum-Well and Large-Area Transmission Electro-Absorption Modulators[J]. Chin. Phys. Lett., 2013, 30(4): 108503
[12] WENG Qian-Chun, AN Zheng-Hua, HOU Ying, ZHU Zi-Qiang. Optically Modulated Bistability in Quantum Dot Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(4): 108503
[13] Mina D. Asham, Walid A. Zein, Adel H. Phillips. Photo-Induced Spin Dynamics in Nanoelectronic Devices[J]. Chin. Phys. Lett., 2012, 29(10): 108503
[14] XU Xiao-Na, WANG Xiao-Dong, LI Yue-Qiang, CHEN Yan-Ling, JI An, ZENG Yi-Ping, and YANG Fu-Hua. Double-Peak N-Shaped Negative Differential Resistance in a Quantum Dot Field Effect Transistor[J]. Chin. Phys. Lett., 2012, 29(8): 108503
[15] LI Xiu-Ping, WEI Hua-Rong, XU Li-Ping, GONG Jian-Ping, YAN Wei-Xian . Tunneling Processes in Optically Excited Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(10): 108503
Viewed
Full text


Abstract