Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 108701    DOI: 10.1088/0256-307X/32/10/108701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Temperature Effects on Information Capacity and Energy Efficiency of Hodgkin–Huxley Neuron
WANG Long-Fei1, JIA Fei2, LIU Xiao-Zhi2, SONG Ya-Lei3, YU Lian-Chun1**
1Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
2Cuiying Honors College, Lanzhou University, Lanzhou 730000
3Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou 730000
Cite this article:   
WANG Long-Fei, JIA Fei, LIU Xiao-Zhi et al  2015 Chin. Phys. Lett. 32 108701
Download: PDF(503KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent experimental and theoretical studies show that energy efficiency, which measures the amount of information processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficiencies of the Hodgkin–Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the temperature corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.
Received: 19 July 2015      Published: 30 October 2015
PACS:  87.19.ly (Energetics)  
  87.19.ls (Encoding, decoding, and transformation)  
  87.19.lc (Noise in the nervous system)  
  87.16.Vy (Ion channels)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/108701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/108701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Long-Fei
JIA Fei
LIU Xiao-Zhi
SONG Ya-Lei
YU Lian-Chun
[1] Attwell D and Laughlin S B 2001 J. Cereb. Blood Flow Meta. 21 1133
[2] Niven J E and Laughlin S B 2008 J. Exp. Biol. 211 1792
[3] Laughlin S B 2001 Curr. Opin. Neurobiol. 11 475
[4] Howarth C, Gleeson P and Attwell D 2012 J. Cereb. Blood Flow Meta. 32 1222
[5] Sengupta B, Stemmler M, Laughlin S B and Niven J E 2010 PLoS Comput. Biol. 6 e1000840
[6] Hodgkin A L 1975 Philos. Trans. R. Soc. B 270 297
[7] Crotty P, Sangrey T and Levy W B 2006 J. Neurophysiol. 96 1237
[8] Alle H, Roth A and Geiger J R P 2009 Science 325 1405
[9] Schreiber S, Machens C K, Herz A V M and Laughlin S B 2002 Neural Comput. 14 1323
[10] Yu L and Liu L 2014 Phys. Rev. E 89 032725
[11] Hille B 2001 Ion Channels of Excitable Membranes (Sunderland: Sinauer)
[12] Rinberg A, Taylor A L and Marder E 2013 PLoS Comput. Biol. 9 e1002857
[13] Yu Y, Hill A P and McCormick D A 2012 PLoS Comput. Biol. 8 e1002456
[14] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[15] Sengupta B, Faisal A A, Laughlin S B and Niven J E 2013 J. Cereb. Blood Flow Meta. 33 1465
[16] Strong S P, Koberle R, van Steveninck R R R and W Bialek 1998 Phys. Rev. Lett. 80 197
[17] Moujahid A, d'Anjou A, Torrealdea F J and Torrealdea F 2011 Phys. Rev. E 83 031912
[18] Hasegawa H 2011 arXiv:1106.5862[cond-mat.dis-nn]
[19] Balasubramanian V, Kimber D and Berry M J 2001 Neural Comput. 13 799
[20] De Polavieja G G 2002 J. Theor. Biol. 214 657
[21] Niven J E and Farris S M 2012 Curr. Biol. 22 R323
[22] Jacobson L 2005 NOAA Tech. Memorandum NMFS-NE 193
[23] McMahon J J and Summers W C 1971 Biol. Bull. 141 561
Viewed
Full text


Abstract