Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 104401    DOI: 10.1088/0256-307X/32/10/104401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Thermal Transport in Methane Hydrate by Molecular Dynamics and Phonon Inelastic Scattering
WANG Zhao-Liang1**, YUAN Kun-Peng1, TANG Da-Wei2
1Energy and Power Department, China University of Petroleum, Qingdao 266580
2Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
WANG Zhao-Liang, YUAN Kun-Peng, TANG Da-Wei 2015 Chin. Phys. Lett. 32 104401
Download: PDF(569KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. The nonmonotonic temperature dependence is attributed to the phonon inelastic scattering at higher temperature and to the confinement of the optic phonon modes and low frequency phonons at low temperature. The thermal conductivity scales proportionally with the van der Waals interaction strength. The conversion of a crystal-like nature into an amorphous one occurs at higher strength. Both the temperature dependence and interaction strength dependence are explained by phonon inelastic scattering.
Received: 27 June 2015      Published: 30 October 2015
PACS:  44.10.+i (Heat conduction)  
  81.90.+c (Other topics in materials science)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/104401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/104401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhao-Liang
YUAN Kun-Peng
TANG Da-Wei
[1] Kerr R A 2004 Science 303 946
[2] Waite W F, Stern L A, Kirby S H, Winters W J and Mason D H 2007 Geophys. J. Int. 169 767
[3] Tse J S and White M A 1988 J. Phys. Chem. 92 5006
[4] Gupta A, Kneafsey T J, Moridis G J, Seol Y, Kowalsky M B and Sloan E D 2006 J. Phys. Chem. B 110 16384
[5] Tse J S 1994 J. Inclusion Phen. Macro. Chem. 17 259
[6] Inoue R, Tanaka H and Nakanishi K 1996 J. Chem. Phys. 104 9569
[7] Tse J S, Shpakov V P, Murashov V V and Belosludov V R 1997 J. Chem. Phys. 107 9271
[8] Tse J S, Ratcliffe C I, Powell B M, Sears V P and Handa H P 1997 J. Phys. Chem. A 101 4491
[9] Tse J S, Shpakov V P, Belosludov V R, Trouw F and Handa Y P 2001 Europhys. Lett. 54 354
[10] Krivchikov A I, Yushchenko A N, Korolyuk O A, Bermejo F J, FernandezPerea R, Bustinduy I and Gonzalez M A 2008 Phys. Rev. B 77 024202
[11] Baumert J, Gutt C, Shpakov V P, Tse J S, Krisch M, Müller M, Requardt H, Klug D D, Janssen S and Press W 2003 Phys. Rev. B 68 174301
[12] Tse J S, Klug D D, Zhao J Y, Sturhahn W, Alp E E, Baumert J, Gutt C, Johnson M R and Press W 2005 Nat. Mater. 4 917
[13] Jiang H, Myshakin E, Jordan K D and Warzinski R P 2008 J. Phys. Chem. B 112 10207
[14] Jiang H and Jordan K D 2010 J. Phys. Chem. C 114 5555
[15] Rosenbaum E J, English N J, Johnson J K, Shaw D W and Warzinski R P 2007 J. Phys. Chem. B 111 13194
[16] English N J and Tse J S 2009 Phys. Rev. Lett. 103 015901
[17] English N J, Tse J S and Carey D 2009 Phys. Rev. B 80 134306
[18] Tse J S, Klein M L and McDonald I R 1984 J. Chem. Phys. 81 6146
[19] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[20] McGaughey A J H and Kivancy M 2004 Int. J. Heat Mass Transfer. 47 1783
[21] McGaughey A J H and Kivancy M 2004 Int. J. Heat Mass Transfer. 47 1799
[22] Broido D A, Ward A and Mingo N 2005 Phys. Rev. B 72 14308
[23] Omini M and Sparavigna A 1996 Phys. Rev. B 53 9064
[24] Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Conrad H and Press W 2005 J. Low Temp. Phys. 139 693
[25] Schober H, Itoh H, Klapproth A, Chihaia V and Kuhs W F 2003 Europhys. Lett. J. E 12 41
[26] Alexander S, Entin-Wohlman O and Orbach R 1986 Phys. Rev. B 34 2726
[27] Alexander S, Entin-Wohlman O and Orbach R 1986 Phys. Rev. B 33 3935
Related articles from Frontiers Journals
[1] Lan Dong, Bohai Liu, Yuanyuan Wang, and Xiangfan Xu. Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation[J]. Chin. Phys. Lett., 2022, 39(12): 104401
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 104401
[3] Yue Wang, Xiaoxiang Yu, Xiao Wan, Nuo Yang, and Chengcheng Deng. Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale[J]. Chin. Phys. Lett., 2021, 38(9): 104401
[4] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. Erratum: A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids [Chin. Phys. Lett. 37 (2020) 104401][J]. Chin. Phys. Lett., 2021, 38(3): 104401
[5] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 104401
[6] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 104401
[7] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 104401
[8] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 104401
[9] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 104401
[10] Yu Yang , XiuLing Li, and Lifa Zhang . Bidirectional and Unidirectional Negative Differential Thermal Resistance Effect in a Modified Lorentz Gas Model[J]. Chin. Phys. Lett., 2021, 38(1): 104401
[11] Qing Xi, Jinxin Zhong, Jixiong He, Xiangfan Xu, Tsuneyoshi Nakayama, Yuanyuan Wang, Jun Liu, Jun Zhou, and Baowen Li. A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids[J]. Chin. Phys. Lett., 2020, 37(10): 104401
[12] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 104401
[13] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 104401
[14] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 104401
[15] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 104401
Viewed
Full text


Abstract