Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 105201    DOI: 10.1088/0256-307X/32/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
MF-DFA Analysis of Turbulent Transport Measured by a Multipurpose Probe
Lafouti M.1**, Ghoranneviss M.2
1Department of Physics, Damavand Branch, Islamic Azad University, Damavand, Iran
2Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Cite this article:   
Lafouti M., Ghoranneviss M. 2015 Chin. Phys. Lett. 32 105201
Download: PDF(615KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of time of applied bias on the edge turbulent transport is analyzed by the multi-fractal detrend fluctuation analysis (MF-DFA) method in the IR-T1 tokamak. The generalized Hurst exponents and the multifractal spectrum are computed by this method. The MF-DFA method is applied to the fluctuation of gradient of floating potential time series collected by a multipurpose probe. The monofractality or multifractality of the time series can be detected by generalized exponent. The multifractal spectrum describes the singularity content of the process. The results show that with applying bias to the plasma at different times (t=15 ms, 18 ms and 22 ms), the degree of multifractality changes. It reaches the minimum when the bias is applied at t=18 ms. The multifractality source of data is investigated by the surrogate method (phase randomization techniques). The surrogate method can destroy the different types of correlations in all the sizes of fluctuations. The results show that the long-range correlation contributes more to multifractality than the fat tail distribution.
Received: 18 May 2015      Published: 30 October 2015
PACS:  52.25.Fi (Transport properties)  
  52.25.Gj (Fluctuation and chaos phenomena)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/105201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lafouti M.
Ghoranneviss M.
[1] Carreras B A et al 1999 Phys. Plasmas 6 4615
[2] Budaev V et al 2004 Nucl. Fusion 44 108
[3] Abombard B L et al 2000 Nucl. Fusion 40 2041
[4] Moyer R A et al 1996 Plasma Phys. Control. Fusion 38 1273
[5] Antar G Y et al 2001 Phys. Rev. Lett. 87 065001
[6] Budaev V et al 1993 Plasma Phys. Control. Fusion 35 429
[7] Zaslavsky G M et al 2000 Phys. Plasmas 7 3691
[8] Wootton A J et al 1990 Phys. Fluids B 2 2879
[9] Perkings F W et al 1993 Phys. Fluids B 5 477
[10] Stockel J et al 2002 29th EPS Conf. on Plasma Phys. and Control. Fusion (Montreaux, ECA 23 October 2002) 26B
[11] Lafouti M et al 2013 Rev. Sci. Instrum. 84 053504
[12] O'swiecimka P et al 2006 Phys. Rev. E 74 016103
[13] Peng C K et al 1994 Goldberger Phys. Rev. E 49 1685
[14] Mandal O S et al 1994 Biophys. J. 67 64
[15] Taqqu M S et al 1995 Fractals 3 785
[16] Kantelhardt J W et al 2002 Physica A 316 87
[17] Arabasiand A et al 1991 Phys. Rev. A 44 2730
[18] Goncalves V et al 1998 Proc. 32nd ASILOMAR Conf. on Signals, Systems and Computers (Monterey)
[19] Theiler J et al 1992 Physica D 58 77
Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 105201
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 105201
[3] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 105201
[4] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 105201
[5] M. Lafouti, M. Ghoranneviss. Bias Effects on the Reynolds Stress Using the Multi-Purpose Probe in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2016, 33(01): 105201
[6] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 105201
[7] PENG Xiao-Dong, QU Hong-Peng, XU Jian-Qiang, HAN Zui-Jiao. Self-Organized Criticality Theory Model of Thermal Sandpile[J]. Chin. Phys. Lett., 2015, 32(09): 105201
[8] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 105201
[9] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 105201
[10] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 105201
[11] SUN Su-Rong, WANG Hai-Xing. Temporal Evolution of Excited Level Populations in a High-Velocity Argon Plasma Flow[J]. Chin. Phys. Lett., 2014, 31(09): 105201
[12] WANG Wei-Zong, RONG Ming-Zhe, YANG Fei, WU Yi. Transport Coefficients of High Temperature SF6 in Local Thermodynamic Equilibrium Using a Phenomenological Approach[J]. Chin. Phys. Lett., 2014, 31(03): 105201
[13] ZHANG Lu, YANG Shu. Modified Hybrid Plasmonic Waveguides as Tunable Optical Tweezers[J]. Chin. Phys. Lett., 2013, 30(3): 105201
[14] CHEN Zhao, SONG Gang, YU Li, CHEN Jian-Jun, XIAO Jing-Hua. Compact Wavelength Demultiplexer Structure Based on Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(10): 105201
[15] HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas[J]. Chin. Phys. Lett., 2012, 29(9): 105201
Viewed
Full text


Abstract