FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Thermal Transport in Methane Hydrate by Molecular Dynamics and Phonon Inelastic Scattering |
WANG Zhao-Liang1**, YUAN Kun-Peng1, TANG Da-Wei2 |
1Energy and Power Department, China University of Petroleum, Qingdao 266580 2Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
WANG Zhao-Liang, YUAN Kun-Peng, TANG Da-Wei 2015 Chin. Phys. Lett. 32 104401 |
|
|
Abstract The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. The nonmonotonic temperature dependence is attributed to the phonon inelastic scattering at higher temperature and to the confinement of the optic phonon modes and low frequency phonons at low temperature. The thermal conductivity scales proportionally with the van der Waals interaction strength. The conversion of a crystal-like nature into an amorphous one occurs at higher strength. Both the temperature dependence and interaction strength dependence are explained by phonon inelastic scattering.
|
|
Received: 27 June 2015
Published: 30 October 2015
|
|
PACS: |
44.10.+i
|
(Heat conduction)
|
|
81.90.+c
|
(Other topics in materials science)
|
|
65.90.+i
|
(Other topics in thermal properties of condensed matter)
|
|
|
|
|
[1] Kerr R A 2004 Science 303 946 [2] Waite W F, Stern L A, Kirby S H, Winters W J and Mason D H 2007 Geophys. J. Int. 169 767 [3] Tse J S and White M A 1988 J. Phys. Chem. 92 5006 [4] Gupta A, Kneafsey T J, Moridis G J, Seol Y, Kowalsky M B and Sloan E D 2006 J. Phys. Chem. B 110 16384 [5] Tse J S 1994 J. Inclusion Phen. Macro. Chem. 17 259 [6] Inoue R, Tanaka H and Nakanishi K 1996 J. Chem. Phys. 104 9569 [7] Tse J S, Shpakov V P, Murashov V V and Belosludov V R 1997 J. Chem. Phys. 107 9271 [8] Tse J S, Ratcliffe C I, Powell B M, Sears V P and Handa H P 1997 J. Phys. Chem. A 101 4491 [9] Tse J S, Shpakov V P, Belosludov V R, Trouw F and Handa Y P 2001 Europhys. Lett. 54 354 [10] Krivchikov A I, Yushchenko A N, Korolyuk O A, Bermejo F J, FernandezPerea R, Bustinduy I and Gonzalez M A 2008 Phys. Rev. B 77 024202 [11] Baumert J, Gutt C, Shpakov V P, Tse J S, Krisch M, Müller M, Requardt H, Klug D D, Janssen S and Press W 2003 Phys. Rev. B 68 174301 [12] Tse J S, Klug D D, Zhao J Y, Sturhahn W, Alp E E, Baumert J, Gutt C, Johnson M R and Press W 2005 Nat. Mater. 4 917 [13] Jiang H, Myshakin E, Jordan K D and Warzinski R P 2008 J. Phys. Chem. B 112 10207 [14] Jiang H and Jordan K D 2010 J. Phys. Chem. C 114 5555 [15] Rosenbaum E J, English N J, Johnson J K, Shaw D W and Warzinski R P 2007 J. Phys. Chem. B 111 13194 [16] English N J and Tse J S 2009 Phys. Rev. Lett. 103 015901 [17] English N J, Tse J S and Carey D 2009 Phys. Rev. B 80 134306 [18] Tse J S, Klein M L and McDonald I R 1984 J. Chem. Phys. 81 6146 [19] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 [20] McGaughey A J H and Kivancy M 2004 Int. J. Heat Mass Transfer. 47 1783 [21] McGaughey A J H and Kivancy M 2004 Int. J. Heat Mass Transfer. 47 1799 [22] Broido D A, Ward A and Mingo N 2005 Phys. Rev. B 72 14308 [23] Omini M and Sparavigna A 1996 Phys. Rev. B 53 9064 [24] Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Conrad H and Press W 2005 J. Low Temp. Phys. 139 693 [25] Schober H, Itoh H, Klapproth A, Chihaia V and Kuhs W F 2003 Europhys. Lett. J. E 12 41 [26] Alexander S, Entin-Wohlman O and Orbach R 1986 Phys. Rev. B 34 2726 [27] Alexander S, Entin-Wohlman O and Orbach R 1986 Phys. Rev. B 33 3935 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|