CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Facile Route to Cotton-Like BiOCl Nanomaterial with Enhanced Dye-Sensitized Visible Light Photocatalytic Efficiency |
ZHAO Mei, DONG Li-Feng**, LI Cheng-Dong, YU Li-Yan, LI Ping |
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042
|
|
Cite this article: |
ZHAO Mei, DONG Li-Feng, LI Cheng-Dong et al 2015 Chin. Phys. Lett. 32 098101 |
|
|
Abstract A facile route is developed to fabricate BiOCl porous cotton-like nanostructure by using Bi2O3 and hydrochloric acid as raw materials. The BiOCl nanomaterial is actually hierarchically structured by numerous ultrathin nanosheets. The nanosheets are around 50–500 nm in lateral size and 2–12 nm in thickness. High-resolution transmission electron microscopy and selected-area electron diffraction analyses indicate that single-crystalline BiOCl nanosheets have the predominant growth direction along [110], the bottom and top surfaces are {001} facets, and four lateral surfaces are {110} facets. The BiOCl nanosheets are dominantly enclosed by {001} facets. From the diffuse reflectance spectroscopy spectrum, the light absorption edge and band gap energy (Eg) are estimated to be 416 nm and 2.98 eV, respectively. The BiOCl photocatalyst possesses superior activity for methyl orange (MO) degradation under visible light irradiation and the photodegradation efficiency is up to 91.5%/180 min. The correlation between morphology and microstructure with enhanced MO-sensitized photodegradation performance under visible light is investigated.
|
|
Received: 06 May 2015
Published: 02 October 2015
|
|
PACS: |
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
82.50.-m
|
(Photochemistry)
|
|
|
|
|
[1] Malato S, FernándezIbá?ez P, Maldonado M I, Blanco J and Gernjak W 2009 Catal. Today 147 1 [2] Mills A, Davies R H and Worsley D 1993 Chem. Soc. Rev. 22 417 [3] FerrariLima A M, De Souza R P, Mendes S S, Marques R G and Gimenes M L 2015 Catal. Today 241 40 [4] Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik E R, Ke X and Zhu H 2009 J. Am. Chem. Soc. 131 17885 [5] Wu H T, Fan J, Liu E Z and Hu X Y 2015 J. Alloys Compd. 623 298 [6] McLaren A, ValdesSolis T, Li G and Tsang S C 2009 J. Am. Chem. Soc. 131 12540 [7] Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J and Bai C L 2005 Angew. Chem. Int. Ed. 44 1269 [8] Shi L, Liang L, Ma J, Meng Y N and Zhong S F 2014 Ceram. Int. 40 3495 [9] Zhang K L, Liu C M, Huang F Q and Zheng C 2006 Appl. Catal. B 68 125 [10] Li J, Yu Y and Zhang L Z 2014 Nanoscale 6 8473 [11] Yue W, Fang S Y and Ming W L 2013 Chin. J. Struct. Chem. 32 458 [12] Li D K, Pei L Z, Yang Y, Pei Y Q, Xie Y K and Zhang Q F 2012 e-J. Surf. Sci. Nanotechnol. 10 161 [13] Zhang L, Wang W Z, Sun S M, Jiang D and Gao E P 2015 Appl. Catal. B 162 470 [14] Gondal M A, Chang X F and Yamani Z H 2010 Chem. Eng. J. 165 250 [15] Zhang X C, Liu X X, Fan C M, Wang Y W and Wang Y F 2013 Appl. Catal. B 132 332 [16] Chen F, Liu H Q, Bagwasi S and Shen X X 2010 J. Photochem. Photobiol. A 215 76 [17] Wu S J, Wang C, Cui Y F and Wang T M 2010 Mater. Lett. 64 115 [18] Yu J H, Wei B, Zhu L, Gao H, Sun W J and Xu L L 2013 Appl. Surf. Sci. 284 497 [19] Wang Q Z, Hui J, Li J J, Cai Y X and Yin S Q 2013 Appl. Surf. Sci. 283 577 [20] Tan C W, Zhu G Q, Hojamberdiev M, Xu C and Liang J 2013 J. Cluster Sci. 24 1115 [21] Li G S, Jiang B, Xiao S N, Lian Z C and Zhang D Q 2014 R. Soc. Chem. 16 1975 [22] Wang Q Z, Hui J, Huang Y J, Ding Y M and Cai Y X 2014 Mater. Sci. Semiconductor Process. 17 87 [23] Butler M A 1977 J. Appl. Phys. 48 1914 [24] Lin X P, Huang T, Huang F Q, Wang W D and Shi J L 2006 J. Phys. Chem. B 110 24629 [25] Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J and Xie Y 2013 J. Am. Chem. Soc. 135 10411 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|