CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method |
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi** |
School of Physics & Electrical Information Engineering, Ningxia University, Yinchuan 750021
|
|
Cite this article: |
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu et al 2015 Chin. Phys. Lett. 32 097701 |
|
|
Abstract Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.
|
|
Received: 10 December 2014
Published: 02 October 2015
|
|
PACS: |
77.80.B-
|
(Phase transitions and Curie point)
|
|
77.80.Dj
|
(Domain structure; hysteresis)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
|
|
|
[1] Goel M 2004 Ceram. Int. 30 1147 [2] Alexandru H V, Berbecaru C, Ioachim A et al 2004 Mater. Sci. Eng. B 109 152 [3] Bhansali U S, Khan M A and Alshareef H N 2013 Microelectron. Eng. 105 68 [4] Takasu H 2001 Microelectron. Eng. 59 237 [5] Morten B, De Cicco G and Prudenziati M 1992 Sens. Actuators A 31 153 [6] Bolborici V, Dawson F P and Pugh M C 2014 Ultrasonics 54 809 [7] Zhang S, Li F, Jiang X et al 2015 Prog. Mater. Sci. 68 1 [8] Choi S T, Kwon J O and Bauer F 2013 Sens. Actuators A 203 282 [9] Schrade D, Müller R, Gross D et al 2014 Int. J. Solids Struct. 51 2144 [10] Wu H H, Zhu J M and Zhang T Y 2015 RSC Adv. 5 37476 [11] Cao W W 2008 Ferroelectrics 375 28 [12] Tong Y, Liu M, Chen H M et al 2015 J. Appl. Phys. 117 074102 [13] Sagala D A and Nambu S 1994 Phys. Rev. B 50 5838 [14] Chen L Q and Shen J 1998 Comput. Phys. Commun. 108 147 [15] Hu H L and Chen L Q 1998 J. Am. Ceram. Soc. 3 492 [16] Wang J, Shi S Q, Chen L Q et al 2004 Acta Mater. 52 749 [17] Wang J, Li Y L, Chen L Q et al 2005 Acta Mater. 53 2495 [18] Xue F, Wang J J, Sheng G et al 2013 Acta Mater. 61 2909 [19] Watanabe Y 1998 J. Appl. Phys. 83 2179 [20] Guyer J E, Wheeler D and Warren J A 2009 Comput. Sci. Eng. 11 6 [21] Ramachandran P and Varoquaux G 2011 Comput. Sci. Eng. 13 40 [22] Soh A K, Song Y C and Ni Y 2006 J. Am. Ceram. Soc. 89 652 [23] Hwang S C and Mcmeeking R M 1998 Ferroelectrics 211 177 [24] Lin S, Lü T, Jin C et al 2006 Phys. Rev. B 74 134115 [25] Kadota Y and Morita T 2012 Jpn. J. Appl. Phys. 51 09LE08 [26] Shu W, Wang J and Zhang T Y 2012 J. Appl. Phys. 112 64108 [27] Li Y L, Hu S Y, Liu Z K et al 2002 Acta Mater. 50 395 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|