CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Electronic and Optical Properties of TiS2 Determined from Generalized Gradient Approximation Study |
Hamza El-Kouch1, Larbi El Farh1**, Jamal Sayah1, Allal Challioui2 |
1Laboratoire de mécanique & énergétique, Département de Physique, Faculté des Sciences, Université Mohammed Premier, Oujda, Maroc 2Laboratoire de chimie organique macromoléculaire et produits naturels, Equipe: Photochimie et Chimie Macromoléculaire, Faculté des Sciences, Université Mohammed Premier, Oujda, Maroc
|
|
Cite this article: |
Hamza El-Kouch, Larbi El Farh, Jamal Sayah et al 2015 Chin. Phys. Lett. 32 096102 |
|
|
Abstract The electronic and optical properties of TiS2 are studied by using an ab-initio calculation within the frame of density functional theory. A linearized and augmented plane wave basis set with the generalized gradient approximation as proposed by Perdew et al. is used for the energy exchange-correlation determination. The results show a metallic character of TiS2, and the plots of total and partial densities of states of TiS2 show the metallic character of the bonds and a strong hybridization between the states d of Ti and p of S below the Fermi energy. The optical properties of the material such as real and imaginary parts of dielectric constant (ε(ω)=ε1 (ω)+iε2 (ω)), refractive index n(ω), optical reflectivity R(ω), for E//x and E//z are performed for the energy range of 0–14 eV.
|
|
Received: 02 June 2015
Published: 02 October 2015
|
|
PACS: |
61.66.-f
|
(Structure of specific crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
|
|
[1] Dolui K and Sanvito S 2013 School Phys. AMBER CRANN Inst. Trinity College Dublin 2 Ireland [2] Qiao Y B, Zhong G H, Li D, Wang J L, Qin X Y and Zeng Z 2007 Chin. Phys. Lett. 24 1050 [3] Let A L, Mainwaing D, Rix C and Murugaraj P 2007 Rev. Roum. Chem. 52 235 [4] Beaumale M, Barbier T, Bréard Y, Guelou G, Powell A V, Vaqueiro P and Guilmeau E 2014 Acta Mater. 78 86 [5] Güller F, Helman C and Llois A M 2012 Physica B 407 3188 [6] Mainwaring D E, Let A L, Rix C and Murugaraj P 2006 Solid State Commun. 140 355 [7] Amzallag E, Martinez H, Baraille I, Rérat M, Loudet M and Gonbeau D 2007 Solid State Sci. 9 594 [8] Yu F, Sun J X and Zhou Y H 2010 Solid State Sci. 12 1786 [9] Gatensby R, Mcevoy N, Lee K, Hallam T, Berner N C, Rezvani E, Winters S, O'Brien M and Duesberg G S 2014 Appl. Surf. Sci. 297 139 [10] Let A L, Mainwaring D E, Rix C and Murugaraj P 2008 J. Non-Cryst. Solids 354 1801 [11] Zhu Z, Cheng Y and Schwingenschl?gl U 2013 Phys. Rev. Lett. 110 077202 [12] Zhang Y, Li Z, Jia H, Luo X, Xu J, Zhang X and Yu D 2006 J. Cryst. Growth 293 124 [13] Ryzhikov M R, Slepkov V A, Kozlova S G, Gabuda S P and Fedorov V E 2014 Comput. Theor. Chem. 1027 125 [14] Li D, Qin X Y and Gu Y 2006 Mater. Res. Bull. 41 282 [15] Ataca C, Sahin H and Ciraci S 2012 J. Phys. Chem. C 116 8983 [16] Carmalt C J, Parkin I P and Peters E S 2003 Polymer 22 1263 [17] Ivanovskaya V V and Seifert G 2004 Solid State Commun. 130 175 [18] Li D, Qin X Y, Zhang J, Wang L and Li H J 2005 Solid State Commun. 135 237 [19] Martinez H, Tison Y, Baraille I, Loudet M and Gonbeau D 2002 J. Electron Spectrosc. Relat. Phenom. 125 181 [20] Fang C M, De Groot R A and Haas C 1997 Phys. Rev. B 56 4455 [21] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 [22] Ben Nasr T, Ben Abdellah H and Bennaceur R 2010 Physica B 405 3427 [23] Amin B, Khenata R, Bouhemadou A, Ahmed I and Maqbool M 2012 Physica B 407 2588 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|