GENERAL |
|
|
|
|
Quantum Interference by Entangled Trajectories |
XU Feng1,2**, WANG Li-Fei3, CUI Xiao-Dong1 |
1School of Physics, Shandong University, Jinan 250100 2School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 3School of Science, Shandong Jiaotong University, Jinan 250357
|
|
Cite this article: |
XU Feng, WANG Li-Fei, CUI Xiao-Dong 2015 Chin. Phys. Lett. 32 080304 |
|
|
Abstract The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.
|
|
Received: 14 March 2015
Published: 02 September 2015
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Xp
|
(Tunneling, traversal time, quantum Zeno dynamics)
|
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
|
|
|
[1] Hillery M 1987 Phys. Rev. A 35 725 [2] Marian P, Marian T A and Scutaru H 2003 Phys. Rev. A 68 062309 [3] Carnal O and Mlyney J 1991 Phys. Rev. Lett. 66 2689 [4] Schollkopf W and Toennies J P 1994 Science 266 1345 [5] Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038 [6] Arndt M, Nairz O, Vos-Andrese J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680 [7] Sanz A S, Borondo F and Miret-Artes S 2000 Phys. Rev. B 61 7743 [8] Sanz A S, Borondo F and Miret-Artes S 2002 J. Phys.: Condens. Matter 14 6109 [9] Sanz A S, Borondo F and Bastiaans M J 2005 Phys. Rev. A 71 042103 [10] Li Z Y 2014 Chin. Phys. B 23 110309 [11] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon) [12] Heller E J 1981 J. Chem. Phys. 75 1048 [13] Tatarskii V I 1983 Sov. Phys. Usp. 26 311 [14] Gelabert R, Gimenez X, Thoss M, Wang H and Miller W H 2002 J. Chem. Phys. 116 10598 [15] Wyatt R 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York: Springer) [16] Donoso A and Martens C C 2001 Phys. Rev. Lett. 87 223202 [17] Donoso A, Zheng Y J and Martens C C 2003 J. Chem. Phys. 119 5010 [18] Wang A, Zheng Y J, Martens C C and Ren W 2009 Phys. Chem. Chem. Phys. 11 1588 [19] Wang L F, Martens C C and Zheng Y J 2012 J. Chem. Phys. 137 034113 [20] Zhang X F and Zheng Y J 2009 Chin. Phys. Lett. 26 0023404 [21] Xu F and Zheng Y J 2013 Acta Phys. Sin. 62 024113 (in Chinese) [22] Xu F, Wang L F, Martens C C and Zheng Y J 2013 J. Chem. Phys. 138 024113 [23] Wang L F and Zheng Y J 2013 Chem. Phys. Lett. 563 112 [24] Xu F, Martens C C and Zheng Y J 2015 Sci. Rep. (submitted) [25] Wigner E P 1932 Phys. Rev. 40 749 [26] Feit M D, Fleck J J A and Steiger A 1982 J. Comput. Phys. 47 412 [27] López H, Martens C C and Donoso A 2006 J. Chem. Phys. 125 154111 [28] Donoso A and Martens C C 2002 J. Chem. Phys. 116 10598 [29] Silverman B W 1986 Density Estimation for Statistics and Data Analysis (London: Chapman and Hall) [30] Fukunaga K 1990 Introduction to Statistical Pattern Recognition 2nd edn (San Diego: Academic) [31] Brooksby C and Prezhdo O V 2003 Chem. Phys. Lett. 378 533 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|