Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 060502    DOI: 10.1088/0256-307X/32/6/060502
GENERAL |
The Dependence of Chimera States on Initial Conditions
FENG Yue-E, LI Hai-Hong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
FENG Yue-E, LI Hai-Hong 2015 Chin. Phys. Lett. 32 060502
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A chimera state consisting of both coherent and incoherent groups is a fascinating spatial pattern in non-locally coupled identical oscillators. It is thought that random initial conditions hardly evolve to chimera states. In this work, we study the dependence of chimera states on initial conditions. We show that random initial conditions may lead to chimera states and the chance of realizing chimera states becomes increasing when the model parameters are moving away from the boundary of their stable regime.
Received: 19 January 2015      Published: 30 June 2015
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  04.20.Ex (Initial value problem, existence and uniqueness of solutions)  
  45.70.Qj (Pattern formation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/060502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/060502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Yue-E
LI Hai-Hong
[1] Kuramoto Y and Battogtokh D 2002 Nonlinear Phenom. Complex Syst. 5 380
[2] Tanaka D and Kuramoto Y 2003 Phys. Rev. E 68 026219
[3] Sethia G C, Sen A and Atay F M 2008 Phys. Rev. Lett. 100 144102
[4] Sheeba J H, Chandrasekar V K and Lakshmanan M 2010 Phys. Rev. E 81 046203
[5] Zhu Y, Zheng Z G and Yang J Z 2013 Europhys. Lett. 103 10007
[6] Abrams D M, Mirollo R, Strogatz S H and Wiley D A 2008 Phys. Rev. Lett. 101 084103
[7] Zakharova A, Kapeller M and Sch?ll E 2014 Phys. Rev. Lett. 112 154101
[8] Gopal R, Chandrasekar V K, Venkatesan A and Lakshmanan M 2014 Phys. Rev. E 89 052914
[9] Sethia G C and Sen A 2014 Phys. Rev. Lett. 112 144101
[10] Schmidt L and Krischer K 2015 Phys. Rev. Lett. 114 034101
[11] Abrams D M and Strogatz S H 2004 Phys. Rev. Lett. 93 174102
[12] Laing C R 2009 Physica D 238 1569
[13] Laing C R 2009 Chaos 19 013113
[14] Ott E and Antonsen T M 2008 Chaos 18 037113
[15] Shima S I and Kuramoto Y 2004 Phys. Rev. E 69 036213
[16] Gu C, St-Yves G and Davidsen J 2013 Phys. Rev. Lett. 111 134101
[17] Martens E A, Laing C R and Strogatz S H 2010 Phys. Rev. Lett. 104 044101
[18] Omelchenko I, Maistrenko Y, H?vel P and Sch?ll E 2011 Phys. Rev. Lett. 106 234102
[19] Omelchenko I, Riemenschneider B, H?vel P, Maistrenko Y and Sch?ll E 2012 Phys. Rev. E 85 026212
[20] Omel'chenko O E, Wolfrum M and Maistrenko Y L 2010 Phys. Rev. E 81 065201(R)
[21] Abrams D M and Strogatz S H 2006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 21
[22] Larger L, Penkovsky B and Maistrenko Y 2013 Phys. Rev. Lett. 111 054103
[23] Zhu Y, Zheng Z G and Yang J Z 2014 Phys. Rev. E 89 022914
[24] Nkomo S, Tinsley M R and Showalter K 2013 Phys. Rev. Lett. 110 244102
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 060502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 060502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 060502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 060502
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 060502
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 060502
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 060502
[8] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 060502
[9] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 060502
[10] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 060502
[11] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 060502
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 060502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 060502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 060502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 060502
Viewed
Full text


Abstract