Chin. Phys. Lett.  2015, Vol. 32 Issue (06): 060301    DOI: 10.1088/0256-307X/32/6/060301
GENERAL |
Critical Behavior of the Energy Gap and Its Relation with the Berry Phase Close to the Excited State Quantum Phase Transition in the Lipkin Model
YUAN Zi-Gang1**, ZHANG Ping2
1School of Science, Beijing University of Chemical Technology, Beijing 100029
2Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
YUAN Zi-Gang, ZHANG Ping 2015 Chin. Phys. Lett. 32 060301
Download: PDF(681KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann–Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.

Received: 25 November 2014      Published: 30 June 2015
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  75.10.Pq (Spin chain models)  
  05.30.Pr (Fractional statistics systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/6/060301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I06/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Zi-Gang
ZHANG Ping

[1] Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[2] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[3] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[4] Zanardi P and Paunkovi? N 2006 Phys. Rev. E 74 031123
[5] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
[6] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[7] Sun Z, Wang X G and Sun C P 2007 Phys. Rev. A 75 062312
[8] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
[9] Zhu S L 2006 Phys. Rev. Lett. 96 077206
[10] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 75 012102
[11] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[12] Dillenschneider R 2008 Phys. Rev. B 78 224413
[13] Sun Z, Lu X M and Song L J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215504
[14] Chen S, Wang L, Hao Y J and Wang Y P 2008 Phys. Rev. A 77 032111
[15] Campos Venuti L and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[16] Pérez-Fernández P, Relaño A, Arias J M, Dukelsky J and García-Ramos J E 2009 Phys. Rev. A 80 032111
       Relaño A, Arias J M, Dukelsky J, García-Ramos J E and Pérez-Fernández P 2008 Phys. Rev. A 78 060102
[17] Yuan Z G, Zhang P, Li S S, Jing J and Kong L B 2012 Phys. Rev. A 85 044102
[18] Cejnar P and Jolie J 2009 Prog. Part. Nucl. Phys. 62 210
[19] Vidal J, Arias J M, Dukelsky J and Garcia-Ramos J E 2006 Phys. Rev. C 73 054305
[20] Arias J M, Dukelsky J, Garcia-Ramos J E and Vidal J 2007 Phys. Rev. C 75 014301
[21] Fernandez F M 2004 Phys. Rev. B 69 037101
       Balawender R, Holas A and March N H 2004 Phys. Rev. B 69 037103
       Vatsya S R 2004 Phys. Rev. B 69 037102
       Alon O E and Cederbaum L S 2003 Phys. Rev. B 68 033105
       Zhang G P and George T F 2004 Phys. Rev. B 69 167102
[22] Barbar M N 1983 Phase Transition and Critical Phenomena (New York: Academic) p 145

Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 060301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 060301
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 060301
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 060301
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 060301
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 060301
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 060301
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 060301
[15] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 060301
Viewed
Full text


Abstract