CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhancement of Thermoelectric Performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 Ceramics by A-Site Cation Nonstoichiometry |
ZHANG Xin1,2, LIU Jian1**, LI Yi1, SU Wen-Bin1, LI Ji-Chao1, ZHU Yuan-Hu1, LI Mao-Kui1, WANG Chun-Ming1, WANG Chun-Lei1 |
1School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 2Taishan College, Shandong University, Jinan 250100
|
|
Cite this article: |
ZHANG Xin, LIU Jian, LI Yi et al 2015 Chin. Phys. Lett. 32 037201 |
|
|
Abstract Sr0.9Ba0.1?xTi0.8Nb0.2O3 ceramics (x=0, 0.01, 0.02 and 0.05) are prepared by solid state reaction, whose thermoelectric properties are investigated from 323 K to 1073 K. By introducing A-site nonstoichiometry, the absolute Seebeck coefficient is enhanced, while the electrical resistivity is surprisingly reduced due to the significantly enhanced carrier mobility. These results are dramatic in thermoelectric materials, effectively enhancing the power factor. Moreover, the thermal conductivity is reduced, thus the thermoelectric performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 ceramic is significantly enhanced by A-site nonstoichiometry.
|
|
Published: 26 February 2015
|
|
PACS: |
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
|
|
|
[1] Bell L E 2008 Science 321 1457 [2] Li J F, Liu W S, Zhao L D and Zhou M 2010 NPG Asia Mater. 2 152 [3] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [4] Pei Y Z and Morelli D T 2009 Appl. Phys. Lett. 94 122112 [5] Zhu G H, Lan Y C, Wang H, Joshi G, Hao Q, Chen G and Ren Z F 2011 Phys. Rev. B 83 115201 [6] Zhu T J, Zhang S N, Yang S H and Zhao X B 2010 Phys. Status Solidi RRL 4 317 [7] Ji H S, Kim H, Lee C, Rhyee J S, Kim M H, Kaviany M and Shim J H 2013 Phys. Rev. B 87 125111 [8] Liu J, Wang C L, Su W B, Wang H C, Zheng P, Li J C, Zhang J L and Mei L M 2009 Appl. Phys. Lett. 95 162110 [9] Lee S, Wilke R H T, McKinstry S T, Zhang S J and Randall C A 2010 Appl. Phys. Lett. 96 031910 [10] Liu Y, Zhao L D, Liu Y C, Lan J L, Xu W, Li F, Zhang B P, Berardan D, Dragoe N, Lin Y H, Nan C W, Li J F and Zhu H M 2011 J. Am. Chem. Soc. 133 20112 [11] Chen L, Che G C, Li H, Dong C, Zhou F, Huang Y Z and Zhao Z X 2000 Chin. Phys. Lett. 17 601 [12] Ianculescu A, Br?ileanu A, Zaharescu M, Guillemet S, Pasuk I, Madarász J and Pokol G 2003 J. Therm. Anal. Calorim. 72 173 [13] Muta H, Kurosaki K and Yamanaka S 2004 J. Alloys Compd. 368 22 [14] Yamamoto M, Ohta H and Koumoto K 2007 Appl. Phys. Lett. 90 072101 [15] Ohta H 2007 Mater. Today 10 44 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|