Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 034701    DOI: 10.1088/0256-307X/32/3/034701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers
YANG Jie1, WAN Zhen-Hua1, WANG Bo-Fu2, SUN De-Jun1**
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
2School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072
Cite this article:   
YANG Jie, WAN Zhen-Hua, WANG Bo-Fu et al  2015 Chin. Phys. Lett. 32 034701
Download: PDF(681KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high-resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The results of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le Métayer, Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the compression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases.
Published: 26 February 2015
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.20.-k (Flow instabilities)  
  47.40.-x (Compressible flows; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/034701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/034701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Jie
WAN Zhen-Hua
WANG Bo-Fu
SUN De-Jun
[1] Rudinger G and Somers L M 1960 J. Fluid Mech. 7 161
[2] Ranjan D, Oakley J and Bonazza R 2011 Annu. Rev. Fluid Mech. 43 117
[3] Haas J and Sturtevant B 1987 J. Fluid Mech. 181 41
[4] Quirk J and Karni S 1996 J. Fluid Mech. 318 129
[5] Layes G and Métayer O 2007 Phys. Fluids 19 042105
[6] Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445
[7] Saurel R, Gavrilyuk S and Renaud F 2003 J. Fluid Mech. 495 283
[8] Niederhaus J, Greenaugh J, Oakley J, Ranjan D, Anderson M and Bonazza R 2008 J. Fluid Mech. 594 85
[9] Bagabir A and Drikakis D 2001 Shock Waves 11 209
[10] Bai J S, Liu J H, Wang T, Zou L Y, Li P and Tan D W 2010 Phys. Rev. E 81 056302
[11] Zheng J G and Lee T S 2013 Int. J. Numer. Meth. Fluids 72 206
[12] Picone J and Boris J 1988 J. Fluid Mech. 189 23
[13] Giordano J and Burtschell Y 2006 Phys. Fluids 18 036102
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 034701
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 034701
[3] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 034701
[4] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 034701
[5] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 034701
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 034701
[7] LIANG Ru-Quan, Kawaji Masahiro. Surface Oscillation and Flow Structure of a Liquid Bridge under Small Vibration[J]. Chin. Phys. Lett., 2014, 31(04): 034701
[8] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 034701
[9] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 034701
[10] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 034701
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 034701
[12] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 034701
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 034701
[14] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 034701
[15] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 034701
Viewed
Full text


Abstract