Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 035201    DOI: 10.1088/0256-307X/32/3/035201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas
SUN Tian-Tian1, CHEN Shao-Yong1,2**, WANG Zhan-Hui2, PENG Xiao-Dong2, HUANG Jie1, MOU Mao-Lin1, TANG Chang-Jian1
1College of Physical Science and Technology, Sichuan University, Chengdu 610064
2Southwestern Institute of Physics, Chengdu 610041
Cite this article:   
SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui et al  2015 Chin. Phys. Lett. 32 035201
Download: PDF(1223KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A critical physical model, based on the ion temperature gradient (ITG) mode and the trapped electron mode (TEM), trying to explain the spatio-temporal dynamics of anomalous particle convection reversal (i.e., the particle convective flux reverses from inward to outward), is developed numerically. The dependence of density peaking and profile shape on the particle convection is studied. Only the inward pinch could lead to the increase of the density peaking. The validation of the critical model is also analyzed. A comparison of the estimates calculated by the model and the experimental results from the Tore Supra tokamak shows that they are qualitatively both consistent.
Published: 26 February 2015
PACS:  52.25.Fi (Transport properties)  
  52.35.Ra (Plasma turbulence)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/035201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/035201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Tian-Tian
CHEN Shao-Yong
WANG Zhan-Hui
PENG Xiao-Dong
HUANG Jie
MOU Mao-Lin
TANG Chang-Jian
[1] Coppi B and Spight C 1978 Phys. Rev. Lett. 41 551
[2] Tang W M, Rewoldt G and Chen L 1986 Phys. Fluids 29 3715
[3] Yan'kov V V 1994 J. Exp. Theor. Phys. Lett. 60 171
[4] Baker D R and Rosenbluth M N 1998 Phys. Plasmas 5 2936
[5] Mahdavi M A, Osborne T H, Leonard A W et al 2002 Nucl. Fusion 42 52
[6] Angioni C, Peeters A G, Pereverzev G V, Ryter F, Tardini G and Team A U 2003 Phys. Plasmas 10 3225
[7] Garbet X, Garzotti L, Mantica P, Nordman H, Valovic M, Weisen H and Angioni C 2003 Phys. Rev. Lett. 91 035001
[8] Zhong W L, Zou X L, Bourdelle C, Song S D, Artaud J F, Aniel T and Duan X R 2013 Phys. Rev. Lett. 111 265001
[9] Wang Z H, Diamond P H, Gürcan ? D, Garbet X and Wang X G 2011 Nucl. Fusion 51 073009
[10] Kalupin D, Tokar M Z, Unterberg B, Loozen X and Pilipenko D 2005 Nucl. Fusion 45 468
[11] Miki K, Diamond P H, Guürcan O D, Tynan G R, Estrada T, Schmitz L and Xu G S 2012 Phys. Plasmas 19 092306
[12] Xu X Q, Umansky M V, Dudson B and Snyder P B 2008 Commun. Comput. Phys. 4 949
Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 035201
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 035201
[3] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 035201
[4] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 035201
[5] M. Lafouti, M. Ghoranneviss. Bias Effects on the Reynolds Stress Using the Multi-Purpose Probe in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2016, 33(01): 035201
[6] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 035201
[7] Lafouti M., Ghoranneviss M.. MF-DFA Analysis of Turbulent Transport Measured by a Multipurpose Probe[J]. Chin. Phys. Lett., 2015, 32(10): 035201
[8] PENG Xiao-Dong, QU Hong-Peng, XU Jian-Qiang, HAN Zui-Jiao. Self-Organized Criticality Theory Model of Thermal Sandpile[J]. Chin. Phys. Lett., 2015, 32(09): 035201
[9] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 035201
[10] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 035201
[11] SUN Su-Rong, WANG Hai-Xing. Temporal Evolution of Excited Level Populations in a High-Velocity Argon Plasma Flow[J]. Chin. Phys. Lett., 2014, 31(09): 035201
[12] WANG Wei-Zong, RONG Ming-Zhe, YANG Fei, WU Yi. Transport Coefficients of High Temperature SF6 in Local Thermodynamic Equilibrium Using a Phenomenological Approach[J]. Chin. Phys. Lett., 2014, 31(03): 035201
[13] ZHANG Lu, YANG Shu. Modified Hybrid Plasmonic Waveguides as Tunable Optical Tweezers[J]. Chin. Phys. Lett., 2013, 30(3): 035201
[14] CHEN Zhao, SONG Gang, YU Li, CHEN Jian-Jun, XIAO Jing-Hua. Compact Wavelength Demultiplexer Structure Based on Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(10): 035201
[15] HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas[J]. Chin. Phys. Lett., 2012, 29(9): 035201
Viewed
Full text


Abstract