Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 030502    DOI: 10.1088/0256-307X/32/3/030502
GENERAL |
Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators
JU Ping, YANG Jun-Zhong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
JU Ping, YANG Jun-Zhong 2015 Chin. Phys. Lett. 32 030502
Download: PDF(1221KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the synchronization dynamics in a system of multiple interacting populations of phase oscillators. Using the dimensionality-reduction technique of Ott and Antonsen, we explore different types of synchronization dynamics when the incoherent state becomes unstable. We find that the inter-population coupling is crucial to the synchronization. When the intra-population interaction is repulsive, the local synchronization can still be maintained through the inter-population coupling. For attractive inter-population coupling, the local order parameters in different populations are of in-phase while the local synchronization are of anti-phase for repulsive inter-population coupling.
Published: 26 February 2015
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Fb (Structures and organization in complex systems)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/030502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/030502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JU Ping
YANG Jun-Zhong
[1] Winfree A 2001 The Geometry of Biological Time (New York: Springer-Verlag)
[2] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer-Verlag)
[3] Tass P A 1999 Phase Resetting in Medicine and Biology (Berlin: Springer-Verlag)
[4] Watanabe S and Strogatz S H 1993 Phys. Rev. Lett. 70 2391
[5] Acebrón J A et al 2005 Rev. Mod. Phys. 77 137
[6] Arenas A et al 2008 Phys. Rep. 469 93
[7] Ott E and Antonsen T M 2008 Chaos 18 037113
[8] Ott E and Antonsen T M 2009 Chaos 19 023117
[9] Omel'chenko O E and Wolfrum M 2012 Phys. Rev. Lett. 109 164101
[10] Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
[11] Martens E A, Barreto E, Strogatz S H, Ott E, So P and Antonsen T M 2009 Phys. Rev. E 79 026204
[12] Tsubo Y, Teramae J and Fukai T 2007 Phys. Rev. Lett. 99 228101
[13] Barreto E, Hunt B, Ott E and So P 2008 Phys. Rev. E 77 036107
[14] Skardal P S and Restrepo J G 2012 Phys. Rev. E 85 016208
[15] Montbrió E, Kurths J and Blasius B 2004 Phys. Rev. E 70 056125
[16] Sakaguchi H and Kuramoto Y 1986 Prog. Theor. Phys. 76 576
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 030502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 030502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 030502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 030502
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 030502
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 030502
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 030502
[8] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 030502
[9] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 030502
[10] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 030502
[11] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 030502
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 030502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 030502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 030502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 030502
Viewed
Full text


Abstract