Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 030503    DOI: 10.1088/0256-307X/32/3/030503
GENERAL |
Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System
MIN Fu-Hong**, SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong
School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042
Cite this article:   
MIN Fu-Hong, SHAO Shu-Yi, HUANG Wen-Di et al  2015 Chin. Phys. Lett. 32 030503
Download: PDF(1130KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Linear transfer function approximations of the fractional integrators 1/sm with m=0.80–0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency?domain approximation method. To illustrate the effectiveness for fractional functions, the magnitude Bode diagrams of the actual and approximate transfer functions 1/sm with a slope of -20m dB/decade are depicted. By using the transfer function approximations of the fractional integrators, a new fractional-order nonlinear system is investigated through the bifurcation diagram and Lyapunov exponent. The corresponding circuit of the fractional-order system is designed and the experimental results match perfectly with the numerical simulations.
Published: 26 February 2015
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Df (Fractals)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/030503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/030503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MIN Fu-Hong
SHAO Shu-Yi
HUANG Wen-Di
WANG En-Rong
[1] Ivo P 2011 Fractional-order Nonlinear Systems Modeling, Analysis and Simulation (Beijing: Higher Education Press)
[2] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. Circuits Syst. 42 485
[3] Ahmad W M and Sprott J C 2003 Chaos Solitons Fractals 16 339
[4] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[5] Li C G and Chen G R 2004 Physica A 341 55
[6] Lu J G 2006 Chin. Phys. 15 0301
[7] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[8] Sun K H, Wang X and Sprott J C 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 1209
[9] Letellier C and Aguirre L A 2013 Phys. Lett. A 377 1707
[10] Yang N N and Liu C X 2013 Nonlinear Dyn. 74 721
[11] Zhou P and Kuang F 2010 Acta Phys. Sin. 59 6981 (in Chinese)
[12] Shao S Y, Min F H, Ma M L and Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese)
[13] Wang L M, Tang Y G, Chai Y Q and Wu F 2014 Chin. Phys. B 23 100501
[14] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 1524 (in Chinese)
[15] Li H Q, Liao X F and Luo M W 2012 Nonlinear Dyn. 68 137
[16] Charef A, Sun H H, Tsao Y Y and Onaral B 1992 IEEE Trans. Autom. Control 37 1465
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 030503
[2] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 030503
[3] Jian Jiang, Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy[J]. Chin. Phys. Lett., 2016, 33(10): 030503
[4] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 030503
[5] Rodrigo A. da Silva, Paulo C. Rech. A Parameter-Space Analysis of the Rikitake System[J]. Chin. Phys. Lett., 2013, 30(12): 030503
[6] Amanda C. Mathias, Paulo C. Rech. Changes in the Dynamics of a Rössler Oscillator by an External Forcing[J]. Chin. Phys. Lett., 2013, 30(3): 030503
[7] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030503
[8] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 030503
[9] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 030503
[10] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 030503
[11] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 030503
[12] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 030503
[13] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 030503
[14] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 030503
[15] Gabriela A. Casas**, Paulo C. Rech*** . Numerical Study of a Three-Dimensional Hénon Map[J]. Chin. Phys. Lett., 2011, 28(1): 030503
Viewed
Full text


Abstract