CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Efficient Annealing-Free P3HT:PC61BM-Based Organic Solar Cells by Using a Novel Solvent Additive without a Halogen or Sulphur Atom |
XIAO Man-Jun1,2, SHEN Wen-Fei2, WANG Jun-Yi2, HAN Liang-Liang2, CHEN Wei-Chao2**, BAO Xi-Chang2, YANG Ren-Qiang2**, ZHU Wei-Guo1** |
1College of Chemistry, and Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan 411105 2CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101
|
|
Cite this article: |
XIAO Man-Jun, SHEN Wen-Fei, WANG Jun-Yi et al 2015 Chin. Phys. Lett. 32 028802 |
|
|
Abstract The power conversion efficiency (PCE) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) based organic solar cells (OSCs) is significantly improved by using benzyl acetate (BA), an organic compound without any halogen or sulphur atom, as a processing additive to control the blend morphology. The solar cells show PCE of 3.85% with a fill factor (FF) of 65.22%, which are higher than those of the common thermal annealing device (PCE 3.30%, FF 60.83%). The overall increased PCE depends upon the enhanced crystallinity of P3HT and good carriers transport, with a high balanced charge carrier mobility.
|
|
Published: 20 January 2015
|
|
PACS: |
88.40.jr
|
(Organic photovoltaics)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
88.40.fh
|
(Advanced materials development)
|
|
|
|
|
[1] Yu G, Gao J, Hummelen J, Wudl F and Heeger A 1995 Science 270 1789 [2] Thompson B C and Fréchet J M J 2008 Angew. Chem. Int. Ed. 47 58 [3] Li Y F 2012 Acc. Chem. Res. 45 723 [4] Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153 [5] Henson Z B, Müllen K B and Guillermo C 2012 Nat. Chem. 4 699 [6] Günes S, Neugebauer H and Sariciftci N S 2007 Chem. Rev. 107 1324 [7] Chen J W and Cao Y 2009 Acc. Chem. Res. 42 1709 [8] Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song G F and Xu Y 2014 Chin. Phys. B 23 038803 [9] Liao S H, Jhuo H J, Cheng Y S and Chen S A 2013 Adv. Mater. 25 4766 [10] He Z C, Zhong C M, Su S J, Xu M, Wu H B and Cao Y 2012 Nat. Photon. 6 593 [11] Zhu F, Chen X H, Lu Z, Yang J X, Huang S M and Sun Z 2014 Nano-Micro Lett. 6 24 [12] Yang J J, Zhang L N, Li S B, Wang Z M, Xu J H, Yang W Y and Jiang Y D 2013 Nano-Micro Lett. 5 40 [13] Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S and Xu X R 2014 Acta Phys. Sin. 63 068402 [14] Ma W L, Yang C Y, Gong X, Lee K and Heeger A J 2005 Adv. Energy Mater. 15 1617 [15] Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I and Ha C S 2006 Nat. Mater. 5 197 [16] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864 [17] Zhao Y, Xie Z Y, Qu Y, Geng Y H and Wang L X 2007 Appl. Phys. Lett. 90 043504 [18] Li G, Yao Y, Yang H, Shrotriya V, Yang G W and Yang Y 2007 Adv. Funct. Mater. 17 1636 [19] Sivula K, Ball Z T, Watanabe N and Fréchet J M J 2006 Adv. Mater. 18 206 [20] Huo L J, Zhang S Q, Guo X, Xu F, Li Y F and Hou J H 2011 Angew. Chem. 123 9871 [21] Liu J G, Shao S Y, Wang H F, Zhao K, Xue L J, Gao X, Xie Z Y and Han Y C 2010 Org. Electron. 11 775 [22] Chen S, Small C E, Amb C M, Subbiah J, Lai T, Tsang S, Manders J R, Reynolds J R and So F 2012 Adv. Energy Mater. 2 1333 [23] Cabanetos C, El L A, Bartelt J A, Douglas J D, Mateker W R, Fréchet J M J, McGehee M D and Beaujuge P M 2013 J. Am. Chem. Soc. 135 4656 [24] Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D and Bazan G C 2006 Appl. Phys. Lett. 89 252105 [25] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619 [26] Lou S J, Szarko J M, Xu T, Yu L, Marks T J and Chen L X 2011 J. Am. Chem. Soc. 133 20661 [27] Bao X C, Wang T, Yang A L, Yang C P, Dou X W, Chen W C, Wang N and Yang R Q 2014 Mater. Sci. Eng. B 180 7 [28] Vongsaysy U, Pavageau B, Wantz G, Bassani D M, Servant L and Aziz H 2014 Adv. Energy Mater. 4 1300752 [29] Chen F C, Tseng H C and Ko C J 2008 Appl. Phys. Lett. 92 103316 [30] Moulé A J and Meerholz K 2008 Adv. Mater. 20 240 [31] Yao Y, Hou J H, Xu Z, Li G and Yang Y 2008 Adv. Funct. Mater. 18 1783 [32] Salim T Wong L H, Br?uer B, Kukreja R, Foo Y L, Bao Z N and Lam Y M 2011 J. Mater. Chem. 21 242 [33] Schmidt K, Tassone C J, Niskala J R, Yiu A T, Lee O P, Weiss T M, Wang C, Fréchet J M J, Beaujuge P M and Toney M F 2014 Adv. Mater. 26 300 [34] Fan H J, Shang H X, Li Y F and Zhan X W 2010 Appl. Phys. Lett. 97 133302 [35] Chen H Y, Yang H, Yang G W, Sista S, Zadoyan R, Li G and Yang Y 2009 J. Phys. Chem. C 113 7946 [36] Pivrikas A, Neugebauer H and Sariciftci N S 2011 Sol. Energy 85 1226 [37] Chu C W, Yang H, Hou W J, Huang J S, Li G and Yang Y 2008 Appl. Phys. Lett. 92 103306 [38] Yang H, Shin T J, Yang L, Cho K, Ryu C Y and Bao Z N 2005 Adv. Funct. Mater. 15 671 [39] Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602 [40] Wang M, Hu X W, Liu P, Li W, Gong X, Huang F and Cao Y 2011 J. Am. Chem. Soc. 133 9638 [41] Shrotriya V, Yao Y, Li G and Yang Y 2006 Appl. Phys. Lett. 89 063505 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|