CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Calculated and Experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells |
LI Tao**, WANG Wen-Jing |
The Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
LI Tao, WANG Wen-Jing 2015 Chin. Phys. Lett. 32 028801 |
|
|
Abstract The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-phase diffusion of phosphorus atoms by dry laser doping is analyzed by the finite difference method implemented in MATLAB. The melting period and melting depth of crystalline silicon as a function of laser energy density is achieved. The effective liquid-phase diffusion of phosphorus atoms in melting silicon by dry laser doping is confirmed by the rapid decrease of sheet resistances in experimental measurement. The plateau of sheet resistances is reached at around 15 Ω/?. The calculated sheet resistances as a function of laser energy density is obtained and the calculated results are in good agreement with the corresponding experimental measurement. Due to the successful verification by comparison between experimental measurement and calculated results, the simulation results could be used to optimize the virtual laser doping parameters.
|
|
Published: 20 January 2015
|
|
|
|
|
|
[1] Li T, Zhou C, Liu Z and Wang W 2011 Int. Commun. Heat Mass Transfer 38 1041 [2] Li T, Wang W, Zhou C, Liu Z, Zhao L, Li H and Diao H 2012 Curr. Nanosci. 8 628 [3] Li T, Wang W, Zhou C, Song Y, Duan Y and Li Y 2013 Prog. Photovolt.: Res. Appl. 21 1337 [4] Liu X Z, Huang Z, Li K X, Li H, Li D M, Chen L Q and Meng Q B 2006 Chin. Phys. Lett. 23 2606 [5] Li T, Zhou C L, Liu Z G, Zhao L, Li H L, Diao H W and Wang W J 2012 Acta Phys. Sin. 61 7 [6] Li T et al 2011 Acta Chim. Sin. 69 848 (in Chinese) [7] Li T, Zhou C L, Song Y, Yang H F, Gao Z H, Duan Y, Li Y Z, Liu Z G and Wang W J 2011 Acta Phys. Sin. 60 6 (in Chinese) [8] Ma X, Liu Z M, Qu S, Wang S R, Hao R T and Liao H 2011 Chin. Phys. Lett. 28 028801 [9] Zheng G G, Xian F L and Li X Y 2011 Chin. Phys. Lett. 28 054213 [10] Wang K S, Tjahjono B S, Wong J, Uddin A and Wenham S R 2011 Sol. Energy Mater. Sol. Cells 95 974 [11] Hameiri Z, Mai L, Puzzer T and Wenham S R 2011 Sol. Energy Mater. Sol. Cells 95 1085 [12] Drew K, Hopman S, H?rteis M, Glunz S W and Granek F 2011 Prog. Photovolt.: Res. Appl. 19 253 [13] R?der T C, Eisele S J, Grabitz P, Wagner C, Kulushich G, K?hler J R and Werner J H 2010 Prog. Photovolt.: Res. Appl. 18 505 [14] K?hler J R and Eisele S 2010 Prog. Photovolt.: Res. Appl. 18 334 [15] Sugianto A, Tjahjono B S, Mai L and Wenham S R 2009 Sol. Energy Mater. Sol. Cells 93 1986 [16] Kray D and Mcintosh K R 2009 IEEE Trans. Electron Devices 56 1645 [17] Kray D et al 2008 The 33rd IEEE Photovoltaic Specialist Conference (California USA) p 786 [18] Ji Y, Yun B F, Hu G H and Cui Y P 2009 Chin. Phys. Lett. 26 014205 [19] Miotello A and Kelly R 1995 Appl. Phys. Lett. 67 3535 [20] Wood R F and Geist G A 1986 Phys. Rev. B 34 2606 [21] Grigoropoulos C, Buckholz R and Domoto G 1986 J. Appl. Phys. 60 2304 [22] Wood R and Giles G 1981 Phys. Rev. B 23 2923 [23] Lowndes D H, Wood R F and Westbrook R D 1983 Appl. Phys. Lett. 43 258 [24] Jellison Jr G and Modine F 1982 Appl. Phys. Lett. 41 180 [25] Jellison Jr G and Modine F 1982 J. Appl. Phys. 53 3745 [26] Glassbrenner C and Slack G 1964 Phys. Rev. 134 A1058 [27] Chichkov B, Momma C, Nolte S, Von Alvensleben F and Tünnermann A 1996 Appl. Phys. A 63 109 [28] Salle B, Gobert O, Meynadier P, Perdrix M, Petite G and Semerok A 1999 Appl. Phys. A 69 381 [29] Peterlongo A, Miotello A and Kelly R 1994 Phys. Rev. E 50 4716 [30] Kodera H 1963 Jpn. J. Appl. Phys. 2 212 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|