CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping |
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing** |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting et al 2015 Chin. Phys. Lett. 32 028101 |
|
|
Abstract A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(001) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading dislocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si {111} facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronic integrated circuits on Si substrates.
|
|
Published: 20 January 2015
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.05.Cy
|
(Elemental semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M, Lochtefeld A and Shellenbarger Z 2007 Appl. Phys. Lett. 91 021114 [2] Ghosh R N, Griffing B and Ballantyne J M 1986 Appl. Phys. Lett. 48 370 [3] Wang G, Leys M, Loo R, Richard O et al 2010 Appl. Phys. Lett. 97 121913 [4] Yonezu H 2002 Semicond. Sci. Technol. 17 762 [5] Vdovin V I, Mil'vidskii M G and Yugova T G 1993 J. Cryst. Growth 132 477 [6] Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31 [7] Yamaguchi M, Yamamoto A, Tachikawa M, Itoh Y and Sugo M 1988 Appl. Phys. Lett. 53 2293 [8] Hayafuji N, Miyashita M, Nishimura T, Kadoiwa K, Kumabe H and Murotani T 1990 Jpn. J. Appl. Phys. 29 2371 [9] Bai J, Park J S, Cheng Z, Curtin M, Adekore B, Carroll M and Lochtefeld A 2007 Appl. Phys. Lett. 90 101902 [10] Hsu C, Chen Y and Su Y 2011 Appl. Phys. Lett. 99 133115 [11] Wang G, Leys R, Nguyen N D, Loo R et al 2010 J. Electrochem. Soc. 157 H1023 [12] Shikida M, Sato K and Tokoro K 2000 Uchikawa Sens. Actuators A: Phys. 80 179 [13] Bordel D, Guimard D, Rajesh M, Nishioka M, Augendre E, Clavelier L and Arakawa Y 2010 Appl. Phys. Lett. 96 043101 [14] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111 [15] Allongue P, Costakieling V and Gerischer 1993 J. Electrochem. Soc. 140 1009 [16] Lin J L, Petrovykh D Y, Viernow J, Men F K, Seo D J and Himpsel F J 1998 J. Appl. Phys. 84 255 [17] Krost A, Heinrichsdorff F, Bimberg D and Cerva H 1994 Appl. Phys. Lett. 64 769 [18] Dynna M and Marty A 1998 Acta Mater. 46 1087 [19] A Scaccabarozzi, S Bietti, A Fedorov, H Kanel, L Miglio, S Sanguinetti 2014 J. Cryst. Growth 401 559 [20] Sze S M and Kwok K Ng 2007 Physics of Semiconductor Devices ch 1 [21] Freundlich A, Kamada H, Neu G and Gil B 1989 Phys. Rev. B 40 1652 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|