Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 027802    DOI: 10.1088/0256-307X/32/2/027802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections
RAJABI Kamran1, CAO Wen-Yu1, SHEN Tihan 2, JI Qing-Bin1, HE Juan1, YANG Wei1, LI Lei1, LI Ding1, WANG Qi3, HU Xiao-Dong1**
1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871
2Joule Physics Laboratory, School of Computing, Science and Engineering, College of Science and Technology, University of Salford, Salford M5 4WT, UK
3Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808
Cite this article:   
RAJABI Kamran, CAO Wen-Yu, SHEN Tihan et al  2015 Chin. Phys. Lett. 32 027802
Download: PDF(694KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Introducing a thin InGaN interlayer with a relatively lower indium content between the quantum well (QW) and barrier results in a step-like InxGa1?xN/GaN potential barrier on one side of the QW. This change in the active region leads to a significant shift in photoluminescence (PL) and electroluminescence (EL) emissions to a longer wavelength compared with the conventional QW based light-emitting diodes. More importantly, an improvement against efficiency droop and an enhancement in light output power at the high-current injection are observed in the modified light-emitting diode structures. The role of the inserted layer in these improvements is investigated by simulation in detail, which shows that the creation of more sublevels in the valence band and the increase of hole concentration inside QWs are the main reasons for these improvements.
Published: 20 January 2015
PACS:  78.55.Cr (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  85.60.Jb (Light-emitting devices)  
  81.07.St (Quantum wells)  
  85.60.B  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/027802       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/027802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAJABI Kamran
CAO Wen-Yu
SHEN Tihan
JI Qing-Bin
HE Juan
YANG Wei
LI Lei
LI Ding
WANG Qi
HU Xiao-Dong
[1] Morko? H 2008 Handbook of Nitride Semiconductors and Devices, Material Properties, Phys. and Growth (New York: Wiley) 1 p 1311
[2] Kioupakis E, Rinke P, Delaney K T and Van de Walle C G 2011 Appl. Phys. Lett. 98 161107
[3] Sheng Xia C Z, Simon Li M, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507
[4] Scheibenzuber W G, Schwarz U T, Sulmoni L, Dorsaz J, Carlin J F and Grandjean N 2011 J. Appl. Phys. 109 093106
[5] Ahn B J, Kim T S, Dong Y, Hong M T, Song J H, Yuh H K, Choi S C, Bae D K and Moon Y 2012 Appl. Phys. Lett. 100 031905
[6] Efremov A A, Bochkareva N I, Gorbunov R I, Lavrinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
[7] Wang J, Wang L, Zhao W, Hao Z and Luo Y 2010 Appl. Phys. Lett. 97 201112
[8] Mickevi?ius J, Jurkevi?ius J, Shur M S, Yang J, Gaska R and Tamulaitis G 2012 Opt. Express 20 25195
[9] Arif R A, Ee Y K and Tansu N 2007 Appl. Phys. Lett. 91 091110
[10] Park S H, Ahn D, Koo B H and Oh J E 2010 Appl. Phys. Lett. 96 051106
[11] Zhao H, Liu G and Tansu N 2010 Appl. Phys. Lett. 97 131114
[12] Vaxenburg R, Lifshitz E and Efros A L 2013 Appl. Phys. Lett. 102 031120
[13] Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, G?tz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
[14] Liu L et al 2012 Appl. Phys. A 108 771
[15] Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P and Chen C H 2012 Appl. Phys. Lett. 101 081120
[16] Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S and Humphreys C J 2003 J. Appl. Phys. 94 1565
[17] Li S and Fu Y 2012 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics (New York: Springer) ch 3, p 41
[18] Chuang S and Chang C 1997 Semicond. Sci. Technol. 12 252
[19] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[20] Shim H W, Choi R J, Jeong S M, Vinh L V, Hong C H, Suh E K and Lee H J 2002 Appl. Phys. Lett. 81 3552
[21] Miller D A B, Chemla D S, Damen T C, Gossard A C and Wiegmann W, Wood T H and Burrus C A 1985 Phys. Rev. B 32 1043
[22] Dai Q et al 2010 Appl. Phys. Lett. 97 133507
Related articles from Frontiers Journals
[1] Wen-Xue Huo, Ming-Long Zhao, Xian-Sheng Tang, Li-Li Han, Zhen Deng, Yang Jiang, Wen-Xin Wang, Hong Chen, Chun-Hua Du, and Hai-Qiang Jia. Effect of Dopant Concentration in a Base Layer on Photocurrent–Voltage Characteristics of Photovoltaic Power Converters[J]. Chin. Phys. Lett., 2020, 37(8): 027802
[2] Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 027802
[3] Qi Wang, Jun-Chi Yu, Tao Tao, Bin Liu, Ting Zhi, Xu Cen, Zi-Li Xie, Xiang-Qian Xiu, Yu-Gang Zhou, You-Dou Zheng, Rong Zhang. Fabrication and Characterization of GaN-Based Micro-LEDs on Silicon Substrate[J]. Chin. Phys. Lett., 2019, 36(8): 027802
[4] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 027802
[5] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 027802
[6] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 027802
[7] Jian Ma, Ping Shi, Xuan Qian, Ya-Xuan Shang, Yang Ji. Spin Noise Spectroscopy in N-GaAs: Spin Relaxation of Localized Electrons[J]. Chin. Phys. Lett., 2017, 34(7): 027802
[8] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 027802
[9] Fu-Long Jiang, Ya-Ying Liu, Yang-Yang Li, Peng Chen, Bin Liu, Zi-Li Xie, Xiang-Qian Xiu, Xue-Mei Hua, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng. Band Edge Emission Improvement by Energy Transfer in Hybrid III-Nitride/Organic Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2016, 33(10): 027802
[10] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 027802
[11] JIANG Teng, XU Sheng-Rui, ZHANG Jin-Cheng, LIN Zhi-Yu, JIANG Ren-Yuan, HAO Yue. Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2015, 32(08): 027802
[12] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 027802
[13] YANG Shuang, DING Kun, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Bandgap Engineering in Wurtzite GaAs Nanowires by Hydrostatic Pressure[J]. Chin. Phys. Lett., 2015, 32(07): 027802
[14] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 027802
[15] WANG Xiao-Bo, LI Yong, YAN Ling-Ling, LI Xin-Jian. Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(5): 027802
Viewed
Full text


Abstract