CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Influence of InGaN Interlayer on the Performance of InGaN/GaN Quantum-Well-Based LEDs at High Injections |
RAJABI Kamran1, CAO Wen-Yu1, SHEN Tihan 2, JI Qing-Bin1, HE Juan1, YANG Wei1, LI Lei1, LI Ding1, WANG Qi3, HU Xiao-Dong1** |
1State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 2Joule Physics Laboratory, School of Computing, Science and Engineering, College of Science and Technology, University of Salford, Salford M5 4WT, UK 3Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808
|
|
Cite this article: |
RAJABI Kamran, CAO Wen-Yu, SHEN Tihan et al 2015 Chin. Phys. Lett. 32 027802 |
|
|
Abstract Introducing a thin InGaN interlayer with a relatively lower indium content between the quantum well (QW) and barrier results in a step-like InxGa1?xN/GaN potential barrier on one side of the QW. This change in the active region leads to a significant shift in photoluminescence (PL) and electroluminescence (EL) emissions to a longer wavelength compared with the conventional QW based light-emitting diodes. More importantly, an improvement against efficiency droop and an enhancement in light output power at the high-current injection are observed in the modified light-emitting diode structures. The role of the inserted layer in these improvements is investigated by simulation in detail, which shows that the creation of more sublevels in the valence band and the increase of hole concentration inside QWs are the main reasons for these improvements.
|
|
Published: 20 January 2015
|
|
|
|
|
|
[1] Morko? H 2008 Handbook of Nitride Semiconductors and Devices, Material Properties, Phys. and Growth (New York: Wiley) 1 p 1311 [2] Kioupakis E, Rinke P, Delaney K T and Van de Walle C G 2011 Appl. Phys. Lett. 98 161107 [3] Sheng Xia C Z, Simon Li M, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507 [4] Scheibenzuber W G, Schwarz U T, Sulmoni L, Dorsaz J, Carlin J F and Grandjean N 2011 J. Appl. Phys. 109 093106 [5] Ahn B J, Kim T S, Dong Y, Hong M T, Song J H, Yuh H K, Choi S C, Bae D K and Moon Y 2012 Appl. Phys. Lett. 100 031905 [6] Efremov A A, Bochkareva N I, Gorbunov R I, Lavrinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605 [7] Wang J, Wang L, Zhao W, Hao Z and Luo Y 2010 Appl. Phys. Lett. 97 201112 [8] Mickevi?ius J, Jurkevi?ius J, Shur M S, Yang J, Gaska R and Tamulaitis G 2012 Opt. Express 20 25195 [9] Arif R A, Ee Y K and Tansu N 2007 Appl. Phys. Lett. 91 091110 [10] Park S H, Ahn D, Koo B H and Oh J E 2010 Appl. Phys. Lett. 96 051106 [11] Zhao H, Liu G and Tansu N 2010 Appl. Phys. Lett. 97 131114 [12] Vaxenburg R, Lifshitz E and Efros A L 2013 Appl. Phys. Lett. 102 031120 [13] Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, G?tz W and Krames M R 2007 Appl. Phys. Lett. 91 243506 [14] Liu L et al 2012 Appl. Phys. A 108 771 [15] Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P and Chen C H 2012 Appl. Phys. Lett. 101 081120 [16] Vickers M E, Kappers M J, Smeeton T M, Thrush E J, Barnard J S and Humphreys C J 2003 J. Appl. Phys. 94 1565 [17] Li S and Fu Y 2012 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics (New York: Springer) ch 3, p 41 [18] Chuang S and Chang C 1997 Semicond. Sci. Technol. 12 252 [19] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204 [20] Shim H W, Choi R J, Jeong S M, Vinh L V, Hong C H, Suh E K and Lee H J 2002 Appl. Phys. Lett. 81 3552 [21] Miller D A B, Chemla D S, Damen T C, Gossard A C and Wiegmann W, Wood T H and Burrus C A 1985 Phys. Rev. B 32 1043 [22] Dai Q et al 2010 Appl. Phys. Lett. 97 133507 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|