Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 028101    DOI: 10.1088/0256-307X/32/2/028101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing**
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting et al  2015 Chin. Phys. Lett. 32 028101
Download: PDF(871KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(001) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading dislocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si {111} facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronic integrated circuits on Si substrates.
Published: 20 January 2015
PACS:  81.05.Ea (III-V semiconductors)  
  81.05.Cy (Elemental semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/028101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/028101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Shi-Yan
ZHOU Xu-Liang
KONG Xiang-Ting
LI Meng-Ke
MI Jun-Ping
BIAN Jing
WANG Wei
PAN Jiao-Qing
[1] Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M, Lochtefeld A and Shellenbarger Z 2007 Appl. Phys. Lett. 91 021114
[2] Ghosh R N, Griffing B and Ballantyne J M 1986 Appl. Phys. Lett. 48 370
[3] Wang G, Leys M, Loo R, Richard O et al 2010 Appl. Phys. Lett. 97 121913
[4] Yonezu H 2002 Semicond. Sci. Technol. 17 762
[5] Vdovin V I, Mil'vidskii M G and Yugova T G 1993 J. Cryst. Growth 132 477
[6] Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31
[7] Yamaguchi M, Yamamoto A, Tachikawa M, Itoh Y and Sugo M 1988 Appl. Phys. Lett. 53 2293
[8] Hayafuji N, Miyashita M, Nishimura T, Kadoiwa K, Kumabe H and Murotani T 1990 Jpn. J. Appl. Phys. 29 2371
[9] Bai J, Park J S, Cheng Z, Curtin M, Adekore B, Carroll M and Lochtefeld A 2007 Appl. Phys. Lett. 90 101902
[10] Hsu C, Chen Y and Su Y 2011 Appl. Phys. Lett. 99 133115
[11] Wang G, Leys R, Nguyen N D, Loo R et al 2010 J. Electrochem. Soc. 157 H1023
[12] Shikida M, Sato K and Tokoro K 2000 Uchikawa Sens. Actuators A: Phys. 80 179
[13] Bordel D, Guimard D, Rajesh M, Nishioka M, Augendre E, Clavelier L and Arakawa Y 2010 Appl. Phys. Lett. 96 043101
[14] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111
[15] Allongue P, Costakieling V and Gerischer 1993 J. Electrochem. Soc. 140 1009
[16] Lin J L, Petrovykh D Y, Viernow J, Men F K, Seo D J and Himpsel F J 1998 J. Appl. Phys. 84 255
[17] Krost A, Heinrichsdorff F, Bimberg D and Cerva H 1994 Appl. Phys. Lett. 64 769
[18] Dynna M and Marty A 1998 Acta Mater. 46 1087
[19] A Scaccabarozzi, S Bietti, A Fedorov, H Kanel, L Miglio, S Sanguinetti 2014 J. Cryst. Growth 401 559
[20] Sze S M and Kwok K Ng 2007 Physics of Semiconductor Devices ch 1
[21] Freundlich A, Kamada H, Neu G and Gil B 1989 Phys. Rev. B 40 1652
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 028101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 028101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 028101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 028101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 028101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 028101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 028101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 028101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 028101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 028101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 028101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 028101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 028101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 028101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 028101
Viewed
Full text


Abstract