Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 024201    DOI: 10.1088/0256-307X/32/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Measuring Topological Charges of Optical Vortices with Multi-Singularity Using a Cylindrical Lens
PENG Yu, GAN Xue-Tao, JU Pei, WANG Ya-Dong, ZHAO Jian-Lin**
Key Laboratory of Space Applied Physics and Chemistry (Ministry of Education), and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
PENG Yu, GAN Xue-Tao, JU Pei et al  2015 Chin. Phys. Lett. 32 024201
Download: PDF(842KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singularities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometric experiments.
Published: 20 January 2015
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/024201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Yu
GAN Xue-Tao
JU Pei
WANG Ya-Dong
ZHAO Jian-Lin
[1] Nye J F and Berry M V 1974 Proc. R. Soc. London A 336 165
[2] Allen L et al 1999 Prog. Opt. 39 291
[3] Gan X T et al 2008 Chin. Phys. Lett. 25 3280
[4] Gan X T et al 2009 Opt. Express 17 23130
[5] Padgett M and Bowman R 2011 Nat. Photon. 5 343
[6] Grier D G 2003 Nature 424 810
[7] Dholakia K and ?i?már T 2011 Nat. Photon. 5 335
[8] Fickler R et al 2012 Science 338 640
[9] Wang J et al 2012 Nat. Photon. 6 488
[10] Mawet D et al 2011 Opt. Lett. 36 1506
[11] Rozas D et al 1997 Phys. Rev. Lett. 79 3399
[12] Yarmchuk E J et al 1979 Phys. Rev. Lett. 43 214
[13] Gan X T et al 2009 Chin. Opt. Lett. 7 1142
[14] Ladavac K and Grier D G 2004 Opt. Express 12 1144
[15] Daria V R et al 2011 J. Opt. 13 044004
[16] Ghai D P et al 2008 Opt. Lasers Eng. 46 419
[17] Sztul I and Alfano R R 2006 Opt. Lett. 31 999
[18] Fraczek E et al 2006 Opt.-Int. J. Light Electron Opt. 117 423
[19] Arlt J et al 1998 J. Mod. Opt. 45 1231
[20] Guo C et al 2009 Opt. Lett. 34 3686
[21] Hickmann J M et al 2010 Phys. Rev. Lett. 105 053904
[22] Courtial J et al 1998 Phys. Rev. Lett. 80 3217
[23] Allen L, Babiker M and Power W L 1994 Opt. Commun. 112 141
[24] Vasnetsov M V et al 2003 Opt. Lett. 28 2285
[25] Schulze C et al 2013 New J. Phys. 15 073025
[26] Beijersbergen M W et al 1993 Opt. Commun. 96 123
[27] Mamaev A V et al 1997 Phys. Rev. Lett. 78 2108
[28] Serna J et al 2001 J. Opt. Soc. Am. A 18 1726
[29] Denisenko V H et al 2002 Proc. SPIE 4607 54
[30] Fang L et al 2014 Acta Opt. Sin. 43 0326001 (in Chinese)
[31] Palacios D M et al 2004 Phys. Rev. Lett. 92 143905
[32] Wang H et al 2009 Acta Opt. Sin. 29 517 (in Chinese)
[33] Leach J and Padgett M J 2003 New J. Phys. 5 154
[34] Leach J and Padgett M J 2004 Europhys. News 35 57
Related articles from Frontiers Journals
[1] Lei Geng, Hao Liang, and Liang-You Peng. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization[J]. Chin. Phys. Lett., 2022, 39(4): 024201
[2] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 024201
[3] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 024201
[4] Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching[J]. Chin. Phys. Lett., 2020, 37(8): 024201
[5] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 024201
[6] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 024201
[7] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 024201
[8] Dan Sun, Yao Lu, Jin-Bo Hao, Kai-Ge Wang. High Optical Magnification Three-Dimensional Integral Imaging of Biological Micro-organism[J]. Chin. Phys. Lett., 2017, 34(7): 024201
[9] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 024201
[10] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 024201
[11] XU Cheng, LIN Di, NIU Ji-Nan, QIANG Ying-Huai, LI Da-Wei, TAO Chun-Xian. Preparation of Ta-Doped TiO2 Using Ta2O5 as the Doping Source[J]. Chin. Phys. Lett., 2015, 32(08): 024201
[12] XIAO Yu, LI Can, XU Shan-Hui, FENG Zhou-Ming, YANG Chang-Sheng, ZHAO Qi-Lai, YANG Zhong-Min. Simultaneously Suppressing Low-Frequency and Relaxation Oscillation Intensity Noise in a DBR Single-Frequency Phosphate Fiber Laser[J]. Chin. Phys. Lett., 2015, 32(06): 024201
[13] ZENG Yong-Ping, LIU Wen-Jie, WENG Guo-En, ZHAO Wan-Ru, ZUO Hai-Jie, YU Jian, ZHANG Jiang-Yong, YING Lei-Ying, ZHANG Bao-Ping. Effect of In Diffusion on the Property of Blue Light-Emitting Diodes[J]. Chin. Phys. Lett., 2015, 32(06): 024201
[14] ZHOU Guo-Rui, LV Hai-Bing, YUAN Xiao-Dong, ZHOU Hai, LIU Hao, LI Ke-Xin, CHENG Xiao-Feng, MIAO Xin-Xiang. Liquid Concentration Sensing Properties of Microfibers with a Nanoscale-Structured Film[J]. Chin. Phys. Lett., 2015, 32(03): 024201
[15] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 024201
Viewed
Full text


Abstract