CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Error Threshold of Fully Random Eigen Model |
LI Duo-Fang1, CAO Tian-Guang1, GENG Jin-Peng1, QIAO Li-Hua2, GU Jian-Zhong3, ZHAN Yong1** |
1Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401 2School of Basic Medicine, Heibei Medical University, Shijiazhuang 050017 3Nuclear Physics Institute, China Institute of Atomic Energy, Beijing 102413
|
|
Cite this article: |
LI Duo-Fang, CAO Tian-Guang, GENG Jin-Peng et al 2015 Chin. Phys. Lett. 32 018702 |
|
|
Abstract Species evolution is essentially a random process of interaction between biological populations and their environments. As a result, some physical parameters in evolution models are subject to statistical fluctuations. In this work, two important parameters in the Eigen model, the fitness and mutation rate, are treated as Gaussian distributed random variables simultaneously to examine the property of the error threshold. Numerical simulation results show that the error threshold in the fully random model appears as a crossover region instead of a phase transition point, and as the fluctuation strength increases the crossover region becomes smoother and smoother. Furthermore, it is shown that the randomization of the mutation rate plays a dominant role in changing the error threshold in the fully random model, which is consistent with the existing experimental data. The implication of the threshold change due to the randomization for antiviral strategies is discussed.
|
|
Published: 23 December 2014
|
|
PACS: |
87.10.Mn
|
(Stochastic modeling)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
87.23.Kg
|
(Dynamics of evolution)
|
|
|
|
|
[1] Eigen M and Winkler R 1971 Neurosci. Res. Program Bull. 9 330 [2] Eigen M and McCaskill J 1988 J. Phys. Chem. 92 6881 [3] Eigen M, McCaskill J and Schuster P 1989 Adv. Chem. Phys. 75 149 [4] Codo?er F M, Daros J A, Solé R V and Elena S F 2006 PLoS Pathog. 2 e136 [5] Solé R V 2003 Eur. Phys. J. B 35 117 [6] Sole R V and Deisboeck T S 2004 J. Theor. Biol. 228 47 [7] Biebricher C K and Eigen M 2005 Virus Res. 107 117 [8] Domingo E, Escarmis C, Lazaro E and Manrubia S C 2005 Virus Res. 107 129 [9] Tarazona P 1992 Phys. Rev. A 45 6038 [10] Nelson M 2000 Phys. Rev. E 61 R6052 [11] Saakian D B and Hu C K 2006 Proc. Natl. Acad. Sci. U.S.A. 103 4935 [12] Saakian D B, Rozanova O and Akmetzhanov A 2008 Phys. Rev. E 78 041908 [13] Schuster P 2011 Theory Biosci. 130 71 [14] Nowak M and Schuster P 1989 J. Theor. Biol. 137 375 [15] Campos P and Fontanari J F 1999 J. Phys. A: Math. Gen. 32 L1 [16] Lazaro E, Escarmis C, Domingo E and Manrubia S C 2002 J. Virol. 76 8675 [17] Lazaro E and Escarmis C 2003 Proc. Natl. Acad. Sci. U.S.A. 100 10830 [18] Feng X L, Li Y X, Gu J Z, Zhuo Y Z and Yang H J 2007 J. Theor. Biol. 246 28 [19] Qiao L H, Zhao T J, Gu J Z and Zhuo Y Z 2014 Acta Phys. Sin. 63 108701 (in Chinese) [20] Saakian D and Hu C K 2004 Phys. Rev. E 69 021913 [21] Thompson C J and Mcbride J L 1974 Math. Biosci. 21 127 [22] Rajamani S, Ichida J K, Antal T, Treco D A, Leu K, Nowak M A, Szostak J W and Chen I A 2010 J. Am. Chem. Soc. 132 5880 [23] Sprouffske K, Merlo L M F, Gerrish P J, Maley C C and Sniegowski P D 2012 Curr. Biol. 22 R762 [24] Ding L, Raphael B J, Chen F and Wendl M C 2013 Cancer Lett. 340 212 [25] Li W, Gao Z M and Gu J 2011 Chin. Phys. Lett. 28 058903 [26] Zhang L and Cao L 2010 Chin. Phys. Lett. 27 060504 [27] Zhu Y, Yongky A and Yin J 2009 Virology 385 39 [28] Good B H and Desai M M 2013 Theor. Popul. Biol. 85 86 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|