Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 018701    DOI: 10.1088/0256-307X/32/1/018701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Protein Based Localized Surface Plasmon Resonance Gas Sensing
Meisam Omidi1,3, Gh. Amoabediny2,3, F. Yazdian1,3**, M. Habibi-Rezaei4,5
1Faculty of New Science and Technology University of Tehran, Tehran, Iran
2Department of Biotechnology and Pharmaceutical Engineering, Faculty of Chemical Engineering, School of Engineering, University of Tehran, Tehran, Iran
3Research Center for New Technologies in Life-Science Engineering, University of Tehran, Tehran, Iran
4School of Biology, College of science, University of Tehran, Tehran, Iran
5Nanobiomedicine Center of Excellance, University of Tehran, Tehran, Iran
Cite this article:   
Meisam Omidi, Gh. Amoabediny, F. Yazdian et al  2015 Chin. Phys. Lett. 32 018701
Download: PDF(549KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We apply the localized surface plasmon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrome c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15–100 ppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrimethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled monolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (ΔλLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between ΔλLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experimental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection.

Published: 23 December 2014
PACS:  87.85.fk (Biosensors)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  87.14.E  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/018701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/018701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meisam Omidi
Gh. Amoabediny
F. Yazdian
M. Habibi-Rezaei
[1] Taranekar P et al 2006 Adv. Funct. Mater. 16 2000
[2] Mauriz E et al 2006 Talanta 69 359
[3] Haes A J et al 2005 J. Am. Chem. Soc. 127 2264
[4] Piliarik M et al 2009 J. Biosens. Bioelectron. 24 1399
[5] Haynes C L and Van Duyne R P 2001 J. Phys. Chem. B 105 5599
[6] Underwood S and Mulvaney P 1994 Langmuir 10 3427
[7] Templeton A C et al 2000 J. Phys. Chem. B 104 564
[8] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[9] Amoabediny Gh et al 2014 Enz. Micro. Tech. 63 7
[10] Lin V S et al 2013 Proc. Natl. Acad. Sci. U.S.A. 110 7131
[11] Xiao L et al 2012 Sensors 12 9635
[12] Franz K J et al 2000 Inorg. Chem. 39 4081
[13] Chen Y Q and Lu C J 2009 Sens. Actuators B 135 492
[14] Kreno L E et al 2010 Anal. Chem. 82 8042
[15] Karakouz T et al 2008 J. Phys. Chem. B 112 14530
[16] Kariminia H R et al 2013 Ecotoxicology Environmental Safety 91 117
[17] Strianese M et al 2011 Protein Pept. Lett. 18 282
[18] Strianese M et al 2012 Inorg. Chem. 51 11220
[19] Milkani E et al 2011 Anal. Biochem. 408 212
[20] Elwing H 1998 Biomaterials 19 397
[21] Omidi M et al 2014 Chin. Phys. Lett. 31 088701
[22] Sato F et al 2001 Chem. Phys. Lett. 341 645
[23] Yoshimura T et al 1986 Biomaterials 25 2436
[24] Fujiwar K et al 2009 Anal. Sci. Feb. 25 241
[25] Suaarez G et al 2013 J. Biosens. Bioelectron. 42 385
Related articles from Frontiers Journals
[1] Zhang-Cai Long, Yan-Ping Zhang, and Lin Luo. Second Virtual Pitch Shift in Cochlea Observed In Situ via Laser Interferometry[J]. Chin. Phys. Lett., 2021, 38(2): 018701
[2] Zhang-Cai Long, Tao Shen, Yan-Ping Zhang, Lin Luo. Pitch Shift in Exsomatized Cochlea Observed by Laser Interferometry[J]. Chin. Phys. Lett., 2019, 36(2): 018701
[3] Meisam Omidi, M. A. Malakoutian, Mohammadmehdi Choolaei, F. Oroojalian, F. Haghiralsadat, F. Yazdian . A Label-Free Detection of Biomolecules Using Micromechanical Biosensors[J]. Chin. Phys. Lett., 2013, 30(6): 018701
[4] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 018701
[5] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Hydrogen Sulfide Detection Using a Gold Nanoparticle/Metalloprotein Based Probe[J]. Chin. Phys. Lett., 2014, 31(08): 018701
Viewed
Full text


Abstract