Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 014205    DOI: 10.1088/0256-307X/32/1/014205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Accelerating Generalized Polygon Beams and Their Propagation
ZHANG Yun-Tian, ZHANG Zhi-Gang, CHENG Teng, ZHANG Qing-Chuan**, WU Xiao-Ping
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
ZHANG Yun-Tian, ZHANG Zhi-Gang, CHENG Teng et al  2015 Chin. Phys. Lett. 32 014205
Download: PDF(10021KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Accelerating beams with intensity cusps and exotic topological properties are drawing increasing attention as they have extensive uses in many intriguing fields. We investigate the structural features of accelerating polygon beams, show their generalized mathematical form theoretically, and discuss the even-numbered polygon beams. Furthermore, we also carry out the experiment and observe the intensity evolution during their propagation.
Published: 23 December 2014
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  42.40.Eq (Holographic optical elements; holographic gratings)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/014205       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/014205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yun-Tian
ZHANG Zhi-Gang
CHENG Teng
ZHANG Qing-Chuan
WU Xiao-Ping
[1] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[2] G Siviloglou et al 2007 Phys. Rev. Lett. 99 213901
[3] Siviloglou G et al 2008 Opt. Lett. 33 207
[4] Dolev I et al 2012 Phys. Rev. Lett. 108 113903
[5] Ellenbogen T, Voloch-Bloch N et al 2009 Nat. Photon. 3 395
[6] Baumgartl J, Mazilu M and Dholakia K 2008 Nat. Photon. 2 675
[7] Liu F, Zhang Z et al 2014 Opt. Lett. 39 100
[8] Zheng Z, Zhang B F, Chen H et al 2011 Appl. Opt. 50 43
[9] Zhang Z G, Liu F R et al 2013 Acta Phys. Sin. 62 208702 (in Chinese)
[10] Polynkin P, Kolesik M et al 2009 Science 324 229
[11] Mathis A, Courvoisier F et al 2012 Appl. Phys. Lett. 101 071110
[12] Poston T and Stewart I 1978 Catastrophe Theory and Its Applications (New York: Dover Publications)
[13] Olver F W NIST Handbook of Mathematical Functions (New York: Cambridge University Press)
[14] Barwick S 2010 Opt. Lett. 35 4118
[15] Ren Z J et al 2013 Chin. Phys. Lett. 30 114208
[16] Ren Z, Dong L, Ying C and Fan C 2012 Opt. Express 20 29276
[17] Barwick S 2010 Appl. Opt. 49 6893
[18] Van Kampen N 1958 Physica 24 437
[19] Deng D M et al 2014 Opt. Lett. 39 2703
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 014205
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 014205
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 014205
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 014205
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 014205
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 014205
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 014205
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 014205
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 014205
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 014205
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 014205
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 014205
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 014205
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 014205
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 014205
Viewed
Full text


Abstract