FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Accelerating Generalized Polygon Beams and Their Propagation |
ZHANG Yun-Tian, ZHANG Zhi-Gang, CHENG Teng, ZHANG Qing-Chuan**, WU Xiao-Ping |
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
|
|
Cite this article: |
ZHANG Yun-Tian, ZHANG Zhi-Gang, CHENG Teng et al 2015 Chin. Phys. Lett. 32 014205 |
|
|
Abstract Accelerating beams with intensity cusps and exotic topological properties are drawing increasing attention as they have extensive uses in many intriguing fields. We investigate the structural features of accelerating polygon beams, show their generalized mathematical form theoretically, and discuss the even-numbered polygon beams. Furthermore, we also carry out the experiment and observe the intensity evolution during their propagation.
|
|
Published: 23 December 2014
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
42.40.Eq
|
(Holographic optical elements; holographic gratings)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
|
|
|
[1] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979 [2] G Siviloglou et al 2007 Phys. Rev. Lett. 99 213901 [3] Siviloglou G et al 2008 Opt. Lett. 33 207 [4] Dolev I et al 2012 Phys. Rev. Lett. 108 113903 [5] Ellenbogen T, Voloch-Bloch N et al 2009 Nat. Photon. 3 395 [6] Baumgartl J, Mazilu M and Dholakia K 2008 Nat. Photon. 2 675 [7] Liu F, Zhang Z et al 2014 Opt. Lett. 39 100 [8] Zheng Z, Zhang B F, Chen H et al 2011 Appl. Opt. 50 43 [9] Zhang Z G, Liu F R et al 2013 Acta Phys. Sin. 62 208702 (in Chinese) [10] Polynkin P, Kolesik M et al 2009 Science 324 229 [11] Mathis A, Courvoisier F et al 2012 Appl. Phys. Lett. 101 071110 [12] Poston T and Stewart I 1978 Catastrophe Theory and Its Applications (New York: Dover Publications) [13] Olver F W NIST Handbook of Mathematical Functions (New York: Cambridge University Press) [14] Barwick S 2010 Opt. Lett. 35 4118 [15] Ren Z J et al 2013 Chin. Phys. Lett. 30 114208 [16] Ren Z, Dong L, Ying C and Fan C 2012 Opt. Express 20 29276 [17] Barwick S 2010 Appl. Opt. 49 6893 [18] Van Kampen N 1958 Physica 24 437 [19] Deng D M et al 2014 Opt. Lett. 39 2703 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|