GENERAL |
|
|
|
|
Is the High-Frequency Signal Necessary for the Resonance in the Delayed System? |
LV Mei-Lei1, SHEN Gang2, WANG Hai-Lun1, YANG Jian-Hua2** |
1College of Electrical and Information Engineering, Quzhou University, Quzhou 324000 2School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116
|
|
Cite this article: |
LV Mei-Lei, SHEN Gang, WANG Hai-Lun et al 2015 Chin. Phys. Lett. 32 010501 |
|
|
Abstract In a delayed system excited by low-frequency and high-frequency signals, the necessity of the high-frequency signal on the resonance is discussed. By adjusting the delay time, the resonance occurs in a wide scope of frequencies, including the primary, subharmonic and superharmonic frequencies. Only for very few cases does the high-frequency signal have a positive effect on the resonance. It is the traditional vibrational resonance phenomenon. In most situations, the high-frequency excitation is unnecessary for the resonance. An appropriate delay, rather than the high-frequency signal, is the key factor in improving the weak low-frequency signal.
|
|
Published: 23 December 2014
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
02.30.Ks
|
(Delay and functional equations)
|
|
|
|
|
[1] Landa P S and McClintock P V E 2000 J. Phys. A 33 L433 [2] Zaikin A, Lopez L, Baltanas J, Kurths J and Sanjuán M A F 2002 Phys. Rev. E 66 011106 [3] Casado-Pascual J and Baltanás J P 2004 Phys. Rev. E 69 046108 [4] Chizhevsky V N, Smeu E and Giacomelli G 2003 Phys. Rev. Lett. 91 220602 [5] Chizhevsky V N 2012 Opt. Lett. 37 4386 [6] Qin Y, Wang J, Men C, Deng B and Wei X L 2011 Chaos 21 023133 [7] Yang J H and Zhu H 2012 Chaos 22 013112 [8] Yang J H and Zhu H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1316 [9] Yao C and Zhan M 2010 Phys. Rev. E 81 061129 [10] Gandhimathi V M and Rajasekar S 2007 Phys. Scr. 76 693 [11] Yang Y and Wang C 2013 Chin. J. Phys. 51 728 [12] Bordet M and Morfu S 2012 Electron. Lett. 48 903 [13] Stan C, Cristescu C P, Alexandroaei D et al 2009 Chaos Solitons Fractals 41 727 [14] Yang L, Liu W, Yi M et al 2012 Phys. Rev. E 86 016209 [15] Borromeo M and Marchesoni F 2006 Phys. Rev. E 73 016142 [16] Borromeo M and Marchesoni F 2005 Europhys. Lett. 72 362 [17] Wang C and Yang K 2012 Chin. J. Phys. 50 607 [18] Yang J H and Liu X B 2010 J. Phys. A 43 122001 [19] Yang J H and Liu X B 2010 Chaos 20 033124 [20] Jeevarathinam C, Rajasekar S and Sanjuan M A F 2011 Phys. Rev. E 83 066205 [21] Fang C J and Liu X B 2012 Chin. Phys. Lett. 29 050504 [22] Yang J H, Sanjuan M A F and Liu H G 2014 Commun. Nonlinear Sci. Numer. Simulat [23] Du L C and Mei D C 2011 Phys. Scr. 84 015003 [24] Yang J H and Liu X B 2010 Phys. Scr. 82 025006 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|