Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 010501    DOI: 10.1088/0256-307X/32/1/010501
GENERAL |
Is the High-Frequency Signal Necessary for the Resonance in the Delayed System?
LV Mei-Lei1, SHEN Gang2, WANG Hai-Lun1, YANG Jian-Hua2**
1College of Electrical and Information Engineering, Quzhou University, Quzhou 324000
2School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
LV Mei-Lei, SHEN Gang, WANG Hai-Lun et al  2015 Chin. Phys. Lett. 32 010501
Download: PDF(2379KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In a delayed system excited by low-frequency and high-frequency signals, the necessity of the high-frequency signal on the resonance is discussed. By adjusting the delay time, the resonance occurs in a wide scope of frequencies, including the primary, subharmonic and superharmonic frequencies. Only for very few cases does the high-frequency signal have a positive effect on the resonance. It is the traditional vibrational resonance phenomenon. In most situations, the high-frequency excitation is unnecessary for the resonance. An appropriate delay, rather than the high-frequency signal, is the key factor in improving the weak low-frequency signal.
Published: 23 December 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Ks (Delay and functional equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/010501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Mei-Lei
SHEN Gang
WANG Hai-Lun
YANG Jian-Hua
[1] Landa P S and McClintock P V E 2000 J. Phys. A 33 L433
[2] Zaikin A, Lopez L, Baltanas J, Kurths J and Sanjuán M A F 2002 Phys. Rev. E 66 011106
[3] Casado-Pascual J and Baltanás J P 2004 Phys. Rev. E 69 046108
[4] Chizhevsky V N, Smeu E and Giacomelli G 2003 Phys. Rev. Lett. 91 220602
[5] Chizhevsky V N 2012 Opt. Lett. 37 4386
[6] Qin Y, Wang J, Men C, Deng B and Wei X L 2011 Chaos 21 023133
[7] Yang J H and Zhu H 2012 Chaos 22 013112
[8] Yang J H and Zhu H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1316
[9] Yao C and Zhan M 2010 Phys. Rev. E 81 061129
[10] Gandhimathi V M and Rajasekar S 2007 Phys. Scr. 76 693
[11] Yang Y and Wang C 2013 Chin. J. Phys. 51 728
[12] Bordet M and Morfu S 2012 Electron. Lett. 48 903
[13] Stan C, Cristescu C P, Alexandroaei D et al 2009 Chaos Solitons Fractals 41 727
[14] Yang L, Liu W, Yi M et al 2012 Phys. Rev. E 86 016209
[15] Borromeo M and Marchesoni F 2006 Phys. Rev. E 73 016142
[16] Borromeo M and Marchesoni F 2005 Europhys. Lett. 72 362
[17] Wang C and Yang K 2012 Chin. J. Phys. 50 607
[18] Yang J H and Liu X B 2010 J. Phys. A 43 122001
[19] Yang J H and Liu X B 2010 Chaos 20 033124
[20] Jeevarathinam C, Rajasekar S and Sanjuan M A F 2011 Phys. Rev. E 83 066205
[21] Fang C J and Liu X B 2012 Chin. Phys. Lett. 29 050504
[22] Yang J H, Sanjuan M A F and Liu H G 2014 Commun. Nonlinear Sci. Numer. Simulat
[23] Du L C and Mei D C 2011 Phys. Scr. 84 015003
[24] Yang J H and Liu X B 2010 Phys. Scr. 82 025006
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 010501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 010501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 010501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 010501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 010501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 010501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 010501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 010501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 010501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 010501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 010501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 010501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 010501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 010501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 010501
Viewed
Full text


Abstract