Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 028502    DOI: 10.1088/0256-307X/31/2/028502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Sensing Characteristics of Shear-Mode AlN Solidly Mounted Resonators with a Silicone Microfluidic System in Viscous Media
XIONG Juan1,2, GUO Peng1,2, SUN Xi-Liang1,2, WANG Sheng-Fu1,2, HU Ming-Zhe3, GU Hao-Shuang1,2**
1School of Physics and Electronic Science, Hubei University, Wuhan 430062
2Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062
3College of Science, Guizhou University, Guiyang 550025
Cite this article:   
XIONG Juan, GUO Peng, SUN Xi-Liang et al  2014 Chin. Phys. Lett. 31 028502
Download: PDF(739KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract AlN solidly mounted resonators with silicone microfluidic systems vibrating in shear mode are fabricated and characterized. The fabrication process is compatible with integrated circuits and the c-axis tilted AlN films are deposited, which allow in-liquid operation through excitation of the shear mode. The silicone microfluidic system is mounted on top of the sensor chip to transport the analyses and confine the flow to the active area. The properties of sensor operation in air, deionized water, ethanol, isopropanol, 80% glycol aqueous solution, glycol, and olive oil are characterized. The effects of different viscosities on the resonance frequency shift and Q-factor of the sensor have been discussed. The sensitivity and Q value in glycol of the sensor are 1.52 MHz cm2/μg and around 60, respectively. The results indicate the potential of a highly sensitive microfluidic sensor system for the applications in viscous media.
Received: 19 April 2013      Published: 28 February 2014
PACS:  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  87.80.-y (Biophysical techniques (research methods))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/028502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/028502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIONG Juan
GUO Peng
SUN Xi-Liang
WANG Sheng-Fu
HU Ming-Zhe
GU Hao-Shuang
[1] Zhang T, Wang Y, Liu W L, Cheng J G, Chan H L W and Choy C L 2005 Chin. Phys. Lett. 22 694
[2] Dragoman M, Muller A, Neculoiu D and Vasilache D 2006 Appl. Phys. Lett. 89 143122
[3] Xu W C, Choi S H and Chae J 2010 Appl. Phys. Lett. 96 053703
[4] Yan Z, Zhou X Y, Pang G K, Zhang T and Liu W L 2007 Appl. Phys. Lett. 90 143503
[5] Resa P, Castro P, Rodríguez-López J and Elvira L 2012 Sens. Actuators B 166 275
[6] Qin L F, Chen Q M, Cheng H B and Chen Q 2011 J. Appl. Phys. 110 094511
[7] Harbeck M, Erbahar D D, Gürol L, Musluoglu E and Ahsen V 2010 Sens. Actuators B 150 346
[8] Qin L F, Chen Q M, Cheng H B and Wan Q M 2010 IEEE Trans. Ultrason. Ferroelect. Freq. Control 57 1840
[9] Wingqvist G, Yantchev V and Katardjiev I 2008 Sens. Actuators A 148 88
[10] Xiong J, Gu H S, Wu W and Hu M Z 2011 J. Electron. Mater. 40 1578
[11] Zhang K, Choy S H, Luo H S, Chan H L W and Wang Y 2011 Microelectron. Eng. 88 1028
[12] Huang C J, Chen Y H, Wang C H, Chou T C and Lee G B 2007 Sens. Actuators B 122 461
[13] Ko Y J, Maeng J H, Ahn Y and Hwang S Y 2008 Sens. Actuators B 132 327
[14] Chen D, Wang J J, Li D H and Xu Y 2011 Sens. Actuators B 159 234
[15] Wingqvist G, Bjurstrom J, Lijeholm L, Yantchev V and Katardjiev I 2007 Sens. Actuators B 123 466
[16] Kanazawa K K and Gordon J G 1985 Anal. Chim. Acta 175 99
[17] Teston F, Feuillard G, Tessier L and Lethiecq M 2000 J. Appl. Phys. 87 689
[18] Weber J, Albers W M, Tuppuranrn J, Link M, Gabl R and Schreiter M 2006 Sens. Actuators A 128 84
[19] Wingqvist G 2010 Surf. Coat. Technol. 205 1279
[20] Naik R S, Lutsky J J, Reif R, Sodini C G 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 257
Related articles from Frontiers Journals
[1] Chong-Biao Luan, Hong-Tao Li. Influence of Hot-Carriers on the On-State Resistance in Si and GaAs Photoconductive Semiconductor Switches Working at Long Pulse Width[J]. Chin. Phys. Lett., 2020, 37(4): 028502
[2] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 028502
[3] CHEN Xuan-Ze, MA Qing-Yu, ZHANG Feng, SUN Xiao-Dong, CUI Hao-Chuan. Theoretical Studies on Ultrasound Induced Hall Voltage and Its Application in Hall Effect Imaging[J]. Chin. Phys. Lett., 2012, 29(9): 028502
[4] FENG Wei**. Terahertz Current Oscillation in Wurtzite InN[J]. Chin. Phys. Lett., 2012, 29(1): 028502
[5] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 028502
[6] XU Ming, SHI Wei, HOU Lei, XUE Hong, WU Shen-Jiang, DAI Hui-Ying. High Current Operation of a Semi-insulating Gallium Arsenide Photoconductive Semiconductor Switch Triggering a Spark Gap[J]. Chin. Phys. Lett., 2010, 27(2): 028502
[7] TIAN Li-Qiang, SHI Wei. Mechanism of Current Oscillations in Gallium ArsenidePhotoconductive Semiconductor Switches[J]. Chin. Phys. Lett., 2008, 25(7): 028502
[8] CAO Jun-Cheng. Current Self-Oscillations in Negative Effective Mass Terahertz Oscillators[J]. Chin. Phys. Lett., 2002, 19(10): 028502
[9] XU Qing-Yu, NI Gang, SANG Hai, DU You-Wei. Giant Hall Effect of Fe45.51(Al2O3 )54.49 Nano-granular Film[J]. Chin. Phys. Lett., 2000, 17(3): 028502
Viewed
Full text


Abstract