Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 027501    DOI: 10.1088/0256-307X/31/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates
XIA Yu-Qian1, SUN Lei1**, XU Hao1, HAN Jing-Wen1, ZHANG Yi-Bo1, WANG Yi1, ZHANG Sheng-Dong1,2
1Institute of Microelectronics, Peking University, Beijing 100871
2Shenzhen Graduate School, Peking University, Shenzhen 518055
Cite this article:   
XIA Yu-Qian, SUN Lei, XU Hao et al  2014 Chin. Phys. Lett. 31 027501
Download: PDF(725KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Co-doped TiO2 thin films are grown on TiN buffered silicon substrates by the pulsed laser deposition method and then hydrogenated. Transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy measurements have shown that the TiN buffer layer can suffer a 400°C deposition temperature and prevent the growth of silicon dioxide on silicon. After that, the room temperature ferromagnetism behaviors are observed in the hydrogenated samples, which are measured by the alternating gradient magnetometer. X-ray photoelectron spectroscopy and x-ray absorption fine structure measurements have revealed the existence of cobalt clusters. According to the material analysis, the magnetic behavior after hydrogenation is suggested to be induced by the enhancement of cobalt clusters.
Received: 08 November 2013      Published: 28 February 2014
PACS:  75.50.Pp (Magnetic semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/027501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Yu-Qian
SUN Lei
XU Hao
HAN Jing-Wen
ZHANG Yi-Bo
WANG Yi
ZHANG Sheng-Dong
[1] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854
[2] Li X J, Zhou Y K, Kim M, Kimura S, Teraguchi N, Emura S, Hasegawa S and Asahi H 2005 Chin. Phys. Lett. 22 463
[3] Stampe P A, Kennedy R J, Xin Y and Parker J S 2002 J. Appl. Phys. 92 7114
[4] Chambers S A, Droubay T, Wang C M, Lea A S, Farrow R F C, Folks L, Deline V and Anders S 2003 Appl. Phys. Lett. 82 1257
[5] Manivannan A, Glaspell G and Seehra M S 2003 J. Appl. Phys. 94 6994
[6] Hong N H, Sakai J, Prellier W, Hassini A, Ruyter A and F Gervais 2004 Phys. Rev. B 70 195204
[7] Shutthanandan V, Thevuthasan S, Heald S M, Droubay T, Engelhard M H, Kaspar T C, McCready D E, Saraf L, Chambers S A, Mun B S, Hamdan N, Nachimuthu P, Taylor B, Sears R P and Sinkovic B 2004 Appl. Phys. Lett. 84 4466
[8] Ge S H, Wang X W, Kou X M, Zhou X Y, Xi L, Zuo Y L, Yang X L and Zhao Y X 2005 Chin. Phys. Lett. 22 1772
[9] Wang H B, He Q, Wang H, Wang X, Zhang J, Jiang Y and Li Q 2011 Thin Solid Films 519 3312
[10] Kennedy R J and Stampe P A 2003 J. Cryst. Growth 252 333
[11] Ali B, Rumaiz A K, Ozbay A, Nowak E R and Shaha S I 2009 Solid State Commun. 149 2210
[12] Yang H S and Singh R K 2005 J. Appl. Phys. 97 043902
[13] Sun X W, Zhao J L, Tan S T, Tan L H, Tung C H, Lo G Q, Kwong D L, Zhang Y W, Li X M and Teo K L 2008 Appl. Phys. Lett. 92 111113
[14] Lee B H, Jeon Y, Zawadzki K, Qi W J and Lee J 1999 Appl. Phys. Lett. 74 3143
[15] Fujimoto M, Koyama H, Konagai M, Hosoi Y, Ishihara K, Ohnishi S and Awaya N 2006 Appl. Phys. Lett. 89 223509
[16] Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y 2007 Appl. Phys. Lett. 91 223510
[17] Choi B J, Choi S, Kim K M, Shin Y C, Hwang C S, Hwang S Y, Cho S S, Park S and Hong S K 2006 Appl. Phys. Lett. 89 012906
[18] Zimmermann J, Finnis M W and Ciacchi L C 2009 J. Chem. Phys. 130 134714
[19] Milosev I, Strehblow H H and Navinsek B 1997 Thin Solid Films 303 246
[20] Van de Walle C J 2000 Phys. Rev. Lett. 85 1012
[21] Lee H J, Jeong S Y, Cho C R and Park C H 2002 Appl. Phys. Lett. 81 4020
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027501
[2] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 027501
[3] Qixun Guo, Yu Wu, Longxiang Xu, Yan Gong, Yunbo Ou, Yang Liu, Leilei Li, Yu Yan, Gang Han, Dongwei Wang, Lihua Wang, Shibing Long, Bowei Zhang, Xun Cao, Shanwu Yang, Xuemin Wang, Yizhong Huang, Tao Liu, Guanghua Yu, Ke He, Jiao Teng. Electrically Tunable Wafer-Sized Three-Dimensional Topological Insulator Thin Films Grown by Magnetron Sputtering[J]. Chin. Phys. Lett., 2020, 37(5): 027501
[4] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 027501
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 027501
[6] Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu. Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer[J]. Chin. Phys. Lett., 2018, 35(1): 027501
[7] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 027501
[8] Chao-Jing Lin, You-Guo Shi, Yong-Qing Li. Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$[J]. Chin. Phys. Lett., 2016, 33(07): 027501
[9] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 027501
[10] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 027501
[11] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 027501
[12] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 027501
[13] JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong, QIN Xiu-Fang, FAN Xiao-Chen, ZHANG Min-Gang, ZHOU Jun-Qi, XU Xiao-Hong. Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films[J]. Chin. Phys. Lett., 2013, 30(4): 027501
[14] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 027501
[15] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1?xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 027501
Viewed
Full text


Abstract