CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates |
XIA Yu-Qian1, SUN Lei1**, XU Hao1, HAN Jing-Wen1, ZHANG Yi-Bo1, WANG Yi1, ZHANG Sheng-Dong1,2 |
1Institute of Microelectronics, Peking University, Beijing 100871 2Shenzhen Graduate School, Peking University, Shenzhen 518055
|
|
Cite this article: |
XIA Yu-Qian, SUN Lei, XU Hao et al 2014 Chin. Phys. Lett. 31 027501 |
|
|
Abstract Co-doped TiO2 thin films are grown on TiN buffered silicon substrates by the pulsed laser deposition method and then hydrogenated. Transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy measurements have shown that the TiN buffer layer can suffer a 400°C deposition temperature and prevent the growth of silicon dioxide on silicon. After that, the room temperature ferromagnetism behaviors are observed in the hydrogenated samples, which are measured by the alternating gradient magnetometer. X-ray photoelectron spectroscopy and x-ray absorption fine structure measurements have revealed the existence of cobalt clusters. According to the material analysis, the magnetic behavior after hydrogenation is suggested to be induced by the enhancement of cobalt clusters.
|
|
Received: 08 November 2013
Published: 28 February 2014
|
|
PACS: |
75.50.Pp
|
(Magnetic semiconductors)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
|
|
|
[1] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854 [2] Li X J, Zhou Y K, Kim M, Kimura S, Teraguchi N, Emura S, Hasegawa S and Asahi H 2005 Chin. Phys. Lett. 22 463 [3] Stampe P A, Kennedy R J, Xin Y and Parker J S 2002 J. Appl. Phys. 92 7114 [4] Chambers S A, Droubay T, Wang C M, Lea A S, Farrow R F C, Folks L, Deline V and Anders S 2003 Appl. Phys. Lett. 82 1257 [5] Manivannan A, Glaspell G and Seehra M S 2003 J. Appl. Phys. 94 6994 [6] Hong N H, Sakai J, Prellier W, Hassini A, Ruyter A and F Gervais 2004 Phys. Rev. B 70 195204 [7] Shutthanandan V, Thevuthasan S, Heald S M, Droubay T, Engelhard M H, Kaspar T C, McCready D E, Saraf L, Chambers S A, Mun B S, Hamdan N, Nachimuthu P, Taylor B, Sears R P and Sinkovic B 2004 Appl. Phys. Lett. 84 4466 [8] Ge S H, Wang X W, Kou X M, Zhou X Y, Xi L, Zuo Y L, Yang X L and Zhao Y X 2005 Chin. Phys. Lett. 22 1772 [9] Wang H B, He Q, Wang H, Wang X, Zhang J, Jiang Y and Li Q 2011 Thin Solid Films 519 3312 [10] Kennedy R J and Stampe P A 2003 J. Cryst. Growth 252 333 [11] Ali B, Rumaiz A K, Ozbay A, Nowak E R and Shaha S I 2009 Solid State Commun. 149 2210 [12] Yang H S and Singh R K 2005 J. Appl. Phys. 97 043902 [13] Sun X W, Zhao J L, Tan S T, Tan L H, Tung C H, Lo G Q, Kwong D L, Zhang Y W, Li X M and Teo K L 2008 Appl. Phys. Lett. 92 111113 [14] Lee B H, Jeon Y, Zawadzki K, Qi W J and Lee J 1999 Appl. Phys. Lett. 74 3143 [15] Fujimoto M, Koyama H, Konagai M, Hosoi Y, Ishihara K, Ohnishi S and Awaya N 2006 Appl. Phys. Lett. 89 223509 [16] Yoshida C, Tsunoda K, Noshiro H and Sugiyama Y 2007 Appl. Phys. Lett. 91 223510 [17] Choi B J, Choi S, Kim K M, Shin Y C, Hwang C S, Hwang S Y, Cho S S, Park S and Hong S K 2006 Appl. Phys. Lett. 89 012906 [18] Zimmermann J, Finnis M W and Ciacchi L C 2009 J. Chem. Phys. 130 134714 [19] Milosev I, Strehblow H H and Navinsek B 1997 Thin Solid Films 303 246 [20] Van de Walle C J 2000 Phys. Rev. Lett. 85 1012 [21] Lee H J, Jeong S Y, Cho C R and Park C H 2002 Appl. Phys. Lett. 81 4020 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|